Abstract
This research focuses on the development of a realtime intelligent facial emotion recognition system for a humanoid robot. In our system, Facial Action Coding System is used to guide the automatic analysis of emotional facial behaviours. The work includes both an upper and a lower facial Action Units (AU) analyser. The upper facial analyser is able to recognise six AUs including Inner and Outer Brow Raiser, Upper Lid Raiser etc, while the lower facial analyser is able to detect eleven AUs including Upper Lip Raiser, Lip Corner Puller, Chin Raiser, etc. Both of the upper and lower analysers are implemented using feedforward Neural Networks (NN). The work also further decodes six basic emotions from the recognised AUs. Two types of facial emotion recognisers are implemented, NN-based and multi-class Support Vector Machine (SVM) based. The NN-based facial emotion recogniser with the above recognised AUs as inputs performs robustly and efficiently. The Multi-class SVM with the radial basis function kernel enables the robot to outperform the NN-based emotion recogniser in real-time posed facial emotion detection tasks for diverse testing subjects.
Original language | English |
---|---|
DOIs | |
Publication status | Published - 3 Sept 2014 |
Event | 2014 International Joint Conference on Neural Networks (IJCNN) - Beijing Duration: 3 Sept 2014 → … |
Conference
Conference | 2014 International Joint Conference on Neural Networks (IJCNN) |
---|---|
Period | 3/09/14 → … |
Keywords
- emotion recognition
- face recognition
- humanoid robots
- image coding
- intelligent robots
- object detection
- radial basis function networks
- robot vision
- support vector machines