Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding

Aman Goel, Qianhui Men, Edmond S. L. Ho*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

3 Citations (Scopus)
27 Downloads (Pure)

Abstract

Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi‐character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi‐Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth‐based) and high‐quality (MoCap‐based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state‐of‐the‐art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area.
Original languageEnglish
Pages (from-to)327-338
Number of pages12
JournalComputer Graphics Forum
Volume41
Issue number8
DOIs
Publication statusPublished - 1 Dec 2022
EventACM SIGGRAPH / Eurographics Symposium on Computer Animation 2022 - Durham University, Durham, United Kingdom
Duration: 13 Sept 202215 Sept 2022
https://computeranimation.org/2022/#:~:text=This%20year%2C%20the%2021st%20annual,on%2013th%2D15th%2C%20September.

Keywords

  • Learning
  • CCS Concepts
  • • Computing methodologies → Motion capture
  • Machine learning
  • Motion processing
  • Animation

Cite this