Interfacial Strategies for Smart Slippery Surfaces

Glen McHale, Rodrigo Ledesma Aguilar, Gary Wells

Research output: Contribution to journalReview articlepeer-review

2 Citations (Scopus)
8 Downloads (Pure)

Abstract

The problem of contact line pinning on surfaces is pervasive and contributes to problems from ring stains to ice formation. Here we provide a single conceptual framework for interfacial strategies encompassing five strategies for modifying the solid-liquid interface to remove pinning and increase droplet mobility. Three biomimetic strategies are included, (i) reducing the liquid-solid interfacial area inspired by the Lotus effect, (ii) converting the liquid-solid contact to a solid-solid contact by the formation of a liquid marble inspired by how galling aphids remove honeydew, and (iii) converting the liquid-solid interface to a liquid-lubricant contact by the use of a lubricant impregnated surface inspired by the Nepenthes Pitcher plant. Two further strategies are, (iv) converting the liquid-solid contact to a liquid-vapor contact by using the Leidenfrost effect, and (v) converting the contact to a liquid-liquid-like contact using slippery omniphobic covalent attachment of a liquid-like coating (SOCAL). Using these approaches, we explain how surfaces can be designed to have smart functionality whilst retaining the mobility of contact lines and droplets. Furthermore, we show how droplets can evaporate at constant contact angle, be positioned using a Cheerios effect, transported by boundary reconfiguration in an energy invariant manner, and drive the rotation of solid components in a Leidenfrost heat engine. Our conceptual framework enables the rationale design of surfaces which are slippery to liquids and is relevant to a diverse range of applications.

Original languageEnglish
Pages (from-to)633-643
Number of pages11
JournalJournal of Bionic Engineering
Volume17
Issue number4
Early online date7 Jul 2020
DOIs
Publication statusPublished - Jul 2020

Fingerprint

Dive into the research topics of 'Interfacial Strategies for Smart Slippery Surfaces'. Together they form a unique fingerprint.

Cite this