TY - JOUR
T1 - IoMT innovations in diabetes management
T2 - Predictive models using wearable data
AU - Rodríguez-Rodríguez, Ignacio
AU - Campo-Valera, María
AU - Rodríguez, José Víctor
AU - Woo, Wai Lok
N1 - Funding information: Ignacio Rodríguez-Rodríguez would like to thank Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Junta de Andalucía, Spain. María Campo-Valera is grateful for postdoctoral program Margarita Salas – Spanish Ministry of Universities (financed by European Union – NextGenerationEU). The authors would like to acknowledge project PID2022-137461NB-C32 financed by MCIN/AEI/10.13039/501100011033/FEDER(“Una manera de hacer Europa”), EU.
PY - 2024/3/15
Y1 - 2024/3/15
N2 - Diabetes Mellitus (DM) represents a metabolic disorder characterized by consistently elevated blood glucose levels due to inadequate pancreatic insulin production. Type 1 DM (DM1) constitutes the insulin-dependent manifestation from disease onset. Effective DM1 management necessitates daily blood glucose monitoring, pattern recognition, and cognitive prediction of future glycemic levels to ascertain the requisite exogenous insulin dosage. Nevertheless, this methodology may prove imprecise and perilous. The advent of groundbreaking developments in information and communication technologies (ICT), encompassing Big Data, the Internet of Medical Things (IoMT), Cloud Computing, and Machine Learning algorithms (ML), has facilitated continuous DM1 management monitoring. This investigation concentrates on IoMT-based methodologies for the unbroken observation of DM1 management, thereby enabling comprehensive characterization of diabetic individuals. Integrating machine learning techniques with wearable technology may yield dependable models for forecasting short-term blood glucose concentrations. The objective of this research is to devise precise person-specific short-term prediction models, utilizing an array of features. To accomplish this, inventive modeling strategies were employed on an extensive dataset comprising glycaemia-related biological attributes gathered from a large-scale passive monitoring initiative involving 40 DM1 patients. The models produced via the Random Forest approach can predict glucose levels within a 30-minute horizon with an average error of 18.60 mg/dL for six-hour data, and 26.21 mg/dL for a 45-minute prediction horizon. These findings have also been corroborated with data from 10 Type 2 DM patients as a proof of concept, thereby demonstrating the potential of IoMT-based methodologies for continuous DM monitoring and management. The integration of innovative biological signal sensors and the application of transformative trends in ICT can offer a novel perspective on DM treatment, ensuring precise and secure glucose level management.
AB - Diabetes Mellitus (DM) represents a metabolic disorder characterized by consistently elevated blood glucose levels due to inadequate pancreatic insulin production. Type 1 DM (DM1) constitutes the insulin-dependent manifestation from disease onset. Effective DM1 management necessitates daily blood glucose monitoring, pattern recognition, and cognitive prediction of future glycemic levels to ascertain the requisite exogenous insulin dosage. Nevertheless, this methodology may prove imprecise and perilous. The advent of groundbreaking developments in information and communication technologies (ICT), encompassing Big Data, the Internet of Medical Things (IoMT), Cloud Computing, and Machine Learning algorithms (ML), has facilitated continuous DM1 management monitoring. This investigation concentrates on IoMT-based methodologies for the unbroken observation of DM1 management, thereby enabling comprehensive characterization of diabetic individuals. Integrating machine learning techniques with wearable technology may yield dependable models for forecasting short-term blood glucose concentrations. The objective of this research is to devise precise person-specific short-term prediction models, utilizing an array of features. To accomplish this, inventive modeling strategies were employed on an extensive dataset comprising glycaemia-related biological attributes gathered from a large-scale passive monitoring initiative involving 40 DM1 patients. The models produced via the Random Forest approach can predict glucose levels within a 30-minute horizon with an average error of 18.60 mg/dL for six-hour data, and 26.21 mg/dL for a 45-minute prediction horizon. These findings have also been corroborated with data from 10 Type 2 DM patients as a proof of concept, thereby demonstrating the potential of IoMT-based methodologies for continuous DM monitoring and management. The integration of innovative biological signal sensors and the application of transformative trends in ICT can offer a novel perspective on DM treatment, ensuring precise and secure glucose level management.
KW - Continuous glucose monitoring
KW - Diabetes
KW - IoT
KW - Machine learning
KW - Wearable trackers
UR - http://www.scopus.com/inward/record.url?scp=85173628752&partnerID=8YFLogxK
U2 - 10.1016/j.eswa.2023.121994
DO - 10.1016/j.eswa.2023.121994
M3 - Article
AN - SCOPUS:85173628752
SN - 0957-4174
VL - 238
JO - Expert Systems with Applications
JF - Expert Systems with Applications
M1 - 121994
ER -