Laminar burning velocities of three C3H6O isomers at atmospheric pressure

A. A. Burluka, M. Harker, H. Osman, C. G.W. Sheppard, A. A. Konnov

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)


Laminar flames of three C3H6O isomers (propylene oxide, propionaldehyde and acetone), representative of cyclic ether, aldehyde and ketone species important as intermediates in oxygenated fuel combustion, have been studied experimentally and computationally. Most of these flames exhibited a non-linear dependency of flame speed upon stretch rate and two complementary independent techniques were adopted to provide the most reliable burning velocity data. Significant differences in burning velocity were noted for the three isomers: propylene oxide + air mixtures burned fastest, then propionaldehyde + air, with acetone + air flames being the slowest; the latter also required stronger ignition sources. Numerical modelling of these flames was based on the Konnov mechanism, enhanced with reactions specific to these oxygenated fuels. The chemical kinetics mechanism predicted flame velocities in qualitative rather than quantitative agreement with the measurements. Sensitivity analysis suggested that the calculated flame speeds had only a weak dependency upon parent fuel-specific reactions rates; however, consideration of possible break-up routes of the primary fuels has allowed identification of intermediate compounds, the chemistry of which requires a better definition.

Original languageEnglish
Pages (from-to)2864-2872
Number of pages9
Issue number10
Early online date13 Feb 2010
Publication statusPublished - 1 Oct 2010


Dive into the research topics of 'Laminar burning velocities of three C3H6O isomers at atmospheric pressure'. Together they form a unique fingerprint.

Cite this