TY - GEN
T1 - Learning Markov models for stationary system behaviors
AU - Chen, Yingke
AU - Mao, Hua
AU - Jaeger, Manfred
AU - Nielsen, Thomas Dyhre
AU - Guldstrand Larsen, Kim
AU - Nielsen, Brian
PY - 2012/3/27
Y1 - 2012/3/27
N2 - Establishing an accurate model for formal verification of an existing hardware or software system is often a manual process that is both time consuming and resource demanding. In order to ease the model construction phase, methods have recently been proposed for automatically learning accurate system models from data in the form of observations of the target system. Common for these approaches is that they assume the data to consist of multiple independent observation sequences. However, for certain types of systems, in particular many running embedded systems, one would only have access to a single long observation sequence, and in these situations existing automatic learning methods cannot be applied. In this paper, we adapt algorithms for learning variable order Markov chains from a single observation sequence of a target system, so that stationary system properties can be verified using the learned model. Experiments demonstrate that system properties (formulated as stationary probabilities of LTL formulas) can be reliably identified using the learned model.
AB - Establishing an accurate model for formal verification of an existing hardware or software system is often a manual process that is both time consuming and resource demanding. In order to ease the model construction phase, methods have recently been proposed for automatically learning accurate system models from data in the form of observations of the target system. Common for these approaches is that they assume the data to consist of multiple independent observation sequences. However, for certain types of systems, in particular many running embedded systems, one would only have access to a single long observation sequence, and in these situations existing automatic learning methods cannot be applied. In this paper, we adapt algorithms for learning variable order Markov chains from a single observation sequence of a target system, so that stationary system properties can be verified using the learned model. Experiments demonstrate that system properties (formulated as stationary probabilities of LTL formulas) can be reliably identified using the learned model.
UR - http://www.scopus.com/inward/record.url?scp=84859453785&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-28891-3_22
DO - 10.1007/978-3-642-28891-3_22
M3 - Conference contribution
AN - SCOPUS:84859453785
SN - 9783642288906
T3 - Lecture Notes in Computer Science
SP - 216
EP - 230
BT - NASA Formal Methods
A2 - Goodloe, Alwyn E.
A2 - Person, Suzette
PB - Springer
CY - Berlin, Germany
T2 - 4th NASA Formal Methods Symposium, NFM 2012
Y2 - 3 April 2012 through 5 April 2012
ER -