Linear precoder design for base station energy cooperation in DC microgrids

Shama Naz Islam*, Md Apel Mahmud, Sajeeb Saha, Md Enamul Haque

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

In this study, the energy data transfer problem in a DC microgrid with multiple renewable powered base stations (BSs) is considered. These BSs can share the renewable generation among each other. The energy cooperation is optimised by the control unit. For effective energy cooperation, energy data needs to be transferred from BSs to the control unit with low latency and high reliability. For cellular enabled microgrid communication, the energy data exchange and cellular communication both use the same communication resources. Thus, there will be interference at the control unit and cellular user (CU), which degrades the reliability of energy data transfer. To solve this problem, a linear precoding technique is designed to minimise the mean square error of the desired messages at the control unit, BSs, and CU while the interferences are kept at a predefined level. For the designed precoders, the expressions of signal-to-interference-plus-noise ratio are formulated and the error performance is analysed. Numerical simulation has been performed to compare the considered precoding technique with other precoding techniques. The simulation results demonstrate that optimum precoding can improve the error performance at the control unit, BSs, and CU by 1, 5, and 3 dB, respectively.

Original languageEnglish
Pages (from-to)1076-1086
Number of pages11
JournalIET Renewable Power Generation
Volume13
Issue number7
Early online date19 Feb 2019
DOIs
Publication statusPublished - 1 May 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Linear precoder design for base station energy cooperation in DC microgrids'. Together they form a unique fingerprint.

Cite this