Abstract
In this study, the energy data transfer problem in a DC microgrid with multiple renewable powered base stations (BSs) is considered. These BSs can share the renewable generation among each other. The energy cooperation is optimised by the control unit. For effective energy cooperation, energy data needs to be transferred from BSs to the control unit with low latency and high reliability. For cellular enabled microgrid communication, the energy data exchange and cellular communication both use the same communication resources. Thus, there will be interference at the control unit and cellular user (CU), which degrades the reliability of energy data transfer. To solve this problem, a linear precoding technique is designed to minimise the mean square error of the desired messages at the control unit, BSs, and CU while the interferences are kept at a predefined level. For the designed precoders, the expressions of signal-to-interference-plus-noise ratio are formulated and the error performance is analysed. Numerical simulation has been performed to compare the considered precoding technique with other precoding techniques. The simulation results demonstrate that optimum precoding can improve the error performance at the control unit, BSs, and CU by 1, 5, and 3 dB, respectively.
Original language | English |
---|---|
Pages (from-to) | 1076-1086 |
Number of pages | 11 |
Journal | IET Renewable Power Generation |
Volume | 13 |
Issue number | 7 |
Early online date | 19 Feb 2019 |
DOIs | |
Publication status | Published - 1 May 2019 |
Externally published | Yes |
Keywords
- noise figure 1.0 dB
- noise figure 3.0 dB
- noise figure 5.0 dB
- considered precoding technique
- designed precoders
- linear precoding technique
- cellular communication
- energy data exchange
- cellular enabled microgrid communication
- energy generation/consumption data
- effective energy cooperation
- different BSs
- control unit
- share
- renewable generation
- intermittent renewable energy
- energy surplus/deficit
- energy storage
- supply
- multiple renewable powered base stations
- energy data transfer problem
- DC microgrid
- base station energy cooperation
- linear precoder design
- energy management systems
- optimisation
- distributed power generation
- renewable energy sources
- MIMO communication
- cellular radio
- wireless channels
- precoding