TY - JOUR
T1 - Lumbar muscle atrophy and increased relative intramuscular lipid concentration are not mitigated by daily artificial gravity after 60-day head-down tilt bed rest
AU - De Martino, Enrico
AU - Hides, Julie
AU - Elliott, James
AU - Hoggarth, Mark
AU - Zange, Jochen
AU - Lindsay, Kirsty
AU - Debuse, Dorothee
AU - Winnard, Andrew
AU - Beard, David
AU - Cook, Jonathan A.
AU - Salomoni, Sauro
AU - Weber, Tobias
AU - Scott, Jonathan
AU - Hodges, Paul W.
AU - Caplan, Nick
N1 - Funding information: The AGBRESA study was funded by the German Aerospace Center, the European Space Agency (contract number: 4000113871/15/NL/PG), and the National Aeronautics and Space Administration (contract number: 80JSC018P0078). The study was performed at the :ENVIHAB research facility of the DLR Institute of Aerospace Medicine. Funding for this selected project (ESA-HSO-U-LE-0629) was received from the STFC/UK Space Agency. This study was supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Center (BRC). P.W.H. is funded by a Fellowship from the National Health and Medical Research Council of Australia (NHMRC: APP1102905). S.E.S. is supported by a Program Grant from the NHMRC awarded to P.W.H. (APP1091302).
PY - 2021/7
Y1 - 2021/7
N2 - Exposure to axial unloading induces adaptations in paraspinal muscles, as shown after spaceflights. This study investigated whether daily exposure to artificial gravity (AG) mitigated lumbar spine flattening and muscle atrophy associated with 60-day head-down tilt (HDT) bed rest (Earth-based space analog). Twenty-four healthy individuals participated in the study: 8 received 30-min continuous AG; 8 received 6 × 5-min AG interspersed with rest periods; and 8 received no AG exposure (control group). Magnetic resonance imaging (MRI) of the lumbopelvic region was conducted at baseline (BDC) and at day 59 of HDT (HDT59). Longitudinal relaxation time (T1)-weighted images were used to assess morphology of the lumbar spine (spinal length, intervertebral disk angles, disk area) and volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 vertebral levels. A chemical shift-based two‐point lipid/water Dixon sequence was used to evaluate muscle composition. Results showed that spinal length and disk area increased (P < 0.05); intervertebral disk angles (P < 0.05) and muscle volumes of LM, LES, and QL reduced (P < 0.01); and lipid-to-water ratio for the LM and LES muscles increased (P < 0.01) after HDT59 in all groups. Neither of the AG protocols mitigated the lumbar spinae deconditioning induced by HDT bed rest. The increase in lipid-to-water ratio in LM and LES muscles indicates an increased relative intramuscular lipid concentration. Altered muscle composition in atrophied muscles may impair lumbar spine function after body unloading, which could increase injury risk to vulnerable soft tissues. This relationship needs further investigation.
AB - Exposure to axial unloading induces adaptations in paraspinal muscles, as shown after spaceflights. This study investigated whether daily exposure to artificial gravity (AG) mitigated lumbar spine flattening and muscle atrophy associated with 60-day head-down tilt (HDT) bed rest (Earth-based space analog). Twenty-four healthy individuals participated in the study: 8 received 30-min continuous AG; 8 received 6 × 5-min AG interspersed with rest periods; and 8 received no AG exposure (control group). Magnetic resonance imaging (MRI) of the lumbopelvic region was conducted at baseline (BDC) and at day 59 of HDT (HDT59). Longitudinal relaxation time (T1)-weighted images were used to assess morphology of the lumbar spine (spinal length, intervertebral disk angles, disk area) and volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 vertebral levels. A chemical shift-based two‐point lipid/water Dixon sequence was used to evaluate muscle composition. Results showed that spinal length and disk area increased (P < 0.05); intervertebral disk angles (P < 0.05) and muscle volumes of LM, LES, and QL reduced (P < 0.01); and lipid-to-water ratio for the LM and LES muscles increased (P < 0.01) after HDT59 in all groups. Neither of the AG protocols mitigated the lumbar spinae deconditioning induced by HDT bed rest. The increase in lipid-to-water ratio in LM and LES muscles indicates an increased relative intramuscular lipid concentration. Altered muscle composition in atrophied muscles may impair lumbar spine function after body unloading, which could increase injury risk to vulnerable soft tissues. This relationship needs further investigation.
KW - Short-arm centrifugation
KW - paraspinal muscles
KW - immobilization
KW - magnetic resonance imaging
UR - https://doi.org/10.6084/m9.figshare.13242119
UR - https://doi.org/10.6084/m9.figshare.14213870
UR - http://www.scopus.com/inward/record.url?scp=85111027086&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00990.2020
DO - 10.1152/japplphysiol.00990.2020
M3 - Article
SN - 8750-7587
VL - 131
SP - 356
EP - 368
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 1
ER -