TY - JOUR
T1 - Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity
AU - Moschos, Sterghios
AU - Jones, Simon Wyn
AU - Perry, Mark
AU - Williams, Andrew Evan
AU - Erjefalt, Jonas
AU - Turner, John James
AU - Barnes, Peter John
AU - Sproat, Brian
AU - Gait, Michael
AU - Lindsay, Mark
PY - 2007/8/21
Y1 - 2007/8/21
N2 - The therapeutic application of siRNA shows promise as an alternative approach to small-molecule inhibitors for the treatment of human disease. However, the major obstacle to its use has been the difficulty in delivering these large anionic molecules in vivo. In this study, we have investigated whether siRNA-mediated knockdown of p38 MAP kinase mRNA in mouse lung is influenced by conjugation to the nonviral delivery vector cholesterol and the cell penetrating peptides (CPP) TAT(48-60) and penetratin. Initial studies in the mouse fibroblast L929 cell line showed that siRNA conjugated to cholesterol, TAT(48-60), and penetratin, but not siRNA alone, achieved a limited reduction of p38 MAP kinase mRNA expression. Intratracheal administration of siRNA resulted in localization within macrophages and scattered epithelial cells and produced a 30-45% knockdown of p38 MAP kinase mRNA at 6 h. As with increasing doses of siRNA, conjugation to cholesterol improved upon the duration but not the magnitude of mRNA knockdown, while penetratin and TAT(48-60) had no effect. Importantly, administration of the penetratin or TAT(48-60) peptides alone caused significant reduction in p38 MAP kinase mRNA expression, while the penetratin-siRNA conjugate activated the innate immune response. Overall, these studies suggest that conjugation to cholesterol may extend but not increase siRNA-mediated p38 MAP kinase mRNA knockdown in the lung. Furthermore, the use of CPP may be limited due to as yet uncharacterized effects upon gene expression and a potential for immune activation.
AB - The therapeutic application of siRNA shows promise as an alternative approach to small-molecule inhibitors for the treatment of human disease. However, the major obstacle to its use has been the difficulty in delivering these large anionic molecules in vivo. In this study, we have investigated whether siRNA-mediated knockdown of p38 MAP kinase mRNA in mouse lung is influenced by conjugation to the nonviral delivery vector cholesterol and the cell penetrating peptides (CPP) TAT(48-60) and penetratin. Initial studies in the mouse fibroblast L929 cell line showed that siRNA conjugated to cholesterol, TAT(48-60), and penetratin, but not siRNA alone, achieved a limited reduction of p38 MAP kinase mRNA expression. Intratracheal administration of siRNA resulted in localization within macrophages and scattered epithelial cells and produced a 30-45% knockdown of p38 MAP kinase mRNA at 6 h. As with increasing doses of siRNA, conjugation to cholesterol improved upon the duration but not the magnitude of mRNA knockdown, while penetratin and TAT(48-60) had no effect. Importantly, administration of the penetratin or TAT(48-60) peptides alone caused significant reduction in p38 MAP kinase mRNA expression, while the penetratin-siRNA conjugate activated the innate immune response. Overall, these studies suggest that conjugation to cholesterol may extend but not increase siRNA-mediated p38 MAP kinase mRNA knockdown in the lung. Furthermore, the use of CPP may be limited due to as yet uncharacterized effects upon gene expression and a potential for immune activation.
U2 - 10.1021/bc070077d
DO - 10.1021/bc070077d
M3 - Article
SN - 1043-1802
VL - 18
SP - 1450
EP - 1459
JO - Bioconjugate Chemistry
JF - Bioconjugate Chemistry
IS - 5
ER -