TY - JOUR
T1 - Magnetic Flux Cancellation in Ellerman Bombs
AU - Reid, Aaron
AU - Mathioudakis, Mihalis
AU - Doyle, John Gerard
AU - Scullion, Eamon
AU - Nelson, Chris
AU - Henriques, Vasco
AU - Ray, Tom
PY - 2016/5/27
Y1 - 2016/5/27
N2 - Ellerman Bombs (EBs) are often found to be co-spatial with bipolar photospheric magnetic fields. We use Hα imaging spectroscopy along with Fe i 6302.5 Å spectropolarimetry from the Swedish 1 m Solar Telescope (SST), combined with data from the Solar Dynamic Observatory, to study EBs and the evolution of the local magnetic fields at EB locations. EBs are found via an EB detection and tracking algorithm. Using NICOLE inversions of the spectropolarimetric data, we find that, on average, (3.43 ± 0.49) × 10^24 erg of stored magnetic energy disappears from the bipolar region during EB burning. The inversions also show flux cancellation rates of 10^14–10^15 Mx s−1 and temperature enhancements of 200 K at the detection footpoints. We investigate the near-simultaneous flaring of EBs due to co-temporal flux emergence from a sunspot, which shows a decrease in transverse velocity when interacting with an existing, stationary area of opposite polarity magnetic flux, resulting in the formation of the EBs. We also show that these EBs can be fueled further by additional, faster moving, negative magnetic flux regions.
AB - Ellerman Bombs (EBs) are often found to be co-spatial with bipolar photospheric magnetic fields. We use Hα imaging spectroscopy along with Fe i 6302.5 Å spectropolarimetry from the Swedish 1 m Solar Telescope (SST), combined with data from the Solar Dynamic Observatory, to study EBs and the evolution of the local magnetic fields at EB locations. EBs are found via an EB detection and tracking algorithm. Using NICOLE inversions of the spectropolarimetric data, we find that, on average, (3.43 ± 0.49) × 10^24 erg of stored magnetic energy disappears from the bipolar region during EB burning. The inversions also show flux cancellation rates of 10^14–10^15 Mx s−1 and temperature enhancements of 200 K at the detection footpoints. We investigate the near-simultaneous flaring of EBs due to co-temporal flux emergence from a sunspot, which shows a decrease in transverse velocity when interacting with an existing, stationary area of opposite polarity magnetic flux, resulting in the formation of the EBs. We also show that these EBs can be fueled further by additional, faster moving, negative magnetic flux regions.
KW - magnetic reconnection
KW - Sun: atmosphere
KW - Sun: magnetic fields
KW - Sun: photosphere
U2 - 10.3847/0004-637X/823/2/110
DO - 10.3847/0004-637X/823/2/110
M3 - Article
SN - 0004-637X
SN - 1538-4357
SN - 2041-8205
SN - 2041-8213
VL - 823
SP - 110
EP - 120
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 2
ER -