Mesoscopic Fabric Sheet Racks and Blocks as Catalysts with Efficiently Exposed Surfaces for Methanol and Ethanol Electrooxidation

Mohamed A. Shenashen, Diab Hassen, Sherif A. El-Safty*, Mahmoud M. Selim, Naeem Akhtar, Abhijit Chatterjee, Ahmed Elmarakbi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Electrode designs based on sheet racks and blocks with multidiffuse groove spaces and enriched active sites and scales would promote the commercial applications of electroactive materials. A facile one-pot hydrothermal approach is reported to synthesize mesoscopic porous Co3O4 or hybrid graphene (GO)/Co3O4 sheet-on-sheet racks and blocks. Three basic types of sheet scalability racks can be built in vertical and nonstacked edge orientations, such as neat micro/nanogroove rooms, butterfly wing scales, and wall groves, leading to highly exposed surface converges and sites. In particular, the stacked GO/Co3O4 sheet-on-sheet blocks (GO/Co3O4 blocks) can be oriented in vertical tower buildings. The atomic structures of the developed Co3O4 catalysts are dominant along the highly dense {112/111} interfaces and single crystal {111} and {112} facets. The electrochemical performance of the mesoscopic porous Co3O4 catalyst toward methanol and ethanol electrooxidation is evaluated in alkaline conditions. The mesoscopic hybrid GO/Co3O4 racks reveal superior catalytic activity in terms of oxidation currents and onset potentials, indicating the effect of the synergetic role of active Co3+ sites along the densely exposed {112} facets, graphene counterparts, and hierarchically nonstacked sheet racks on the electroactive functionality. Results indicate that the mesoscopic GO/Co3O4 sheet catalyst is suitable for highly efficient electrochemical reactions.

Original languageEnglish
Article number1600743
Number of pages12
JournalAdvanced Materials Interfaces
Volume3
Issue number24
Early online date7 Nov 2016
DOIs
Publication statusPublished - 19 Dec 2016

Fingerprint

Dive into the research topics of 'Mesoscopic Fabric Sheet Racks and Blocks as Catalysts with Efficiently Exposed Surfaces for Methanol and Ethanol Electrooxidation'. Together they form a unique fingerprint.

Cite this