TY - JOUR
T1 - Meteorology and surface energy fluxes in the 2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps
AU - Brock, Benjamin
AU - Mihalcea, Claudia
AU - Kirkbride, Martin
AU - Diolaiuti, Guglielmina
AU - Cutler, Mark
AU - Smiraglia, Claudio
PY - 2010
Y1 - 2010
N2 - During the 2005–2007 June–September ablation seasons, meteorological conditions were recorded on the lower and upper parts of the debris‐covered ablation zone of Miage Glacier, Italy. In 2005, debris temperature and subdebris ice melt were also monitored at 25 points with debris thickness of 0.04–0.55 m, spread over 5 km2 of the glacier. The radiative fluxes were directly measured, and near‐closure of the surface energy balance is achieved, providing support for the bulk aerodynamic calculation of the turbulent fluxes. Surface‐layer meteorology and energy fluxes are dominated by the pattern of incoming solar radiation which heats the debris, driving strong convection.
Mean measured subdebris ice melt rates are 6–33 mm d−1, and mean debris thermal conductivity is 0.96 W m−1 K−1, displaying a weak positive relationship with debris thickness. Mean seasonal values of the net shortwave, net longwave, and debris heat fluxes show little variation between years, despite contrasting meteorological conditions, while the turbulent latent (evaporative) heat flux was more than twice as large in the wet summer of 2007 compared with 2005. The increase in energy output from the debris surface in response to increasing surface temperature means that subdebris ice melt rates are fairly insensitive to atmospheric temperature variations in contrast to debris‐free glaciers. Improved knowledge of spatial patterns of debris thickness distribution and 2 m air temperature, and the controls on evaporation of rainwater from the surface, are needed for distributed physically based melt modeling of debris‐covered glaciers.
AB - During the 2005–2007 June–September ablation seasons, meteorological conditions were recorded on the lower and upper parts of the debris‐covered ablation zone of Miage Glacier, Italy. In 2005, debris temperature and subdebris ice melt were also monitored at 25 points with debris thickness of 0.04–0.55 m, spread over 5 km2 of the glacier. The radiative fluxes were directly measured, and near‐closure of the surface energy balance is achieved, providing support for the bulk aerodynamic calculation of the turbulent fluxes. Surface‐layer meteorology and energy fluxes are dominated by the pattern of incoming solar radiation which heats the debris, driving strong convection.
Mean measured subdebris ice melt rates are 6–33 mm d−1, and mean debris thermal conductivity is 0.96 W m−1 K−1, displaying a weak positive relationship with debris thickness. Mean seasonal values of the net shortwave, net longwave, and debris heat fluxes show little variation between years, despite contrasting meteorological conditions, while the turbulent latent (evaporative) heat flux was more than twice as large in the wet summer of 2007 compared with 2005. The increase in energy output from the debris surface in response to increasing surface temperature means that subdebris ice melt rates are fairly insensitive to atmospheric temperature variations in contrast to debris‐free glaciers. Improved knowledge of spatial patterns of debris thickness distribution and 2 m air temperature, and the controls on evaporation of rainwater from the surface, are needed for distributed physically based melt modeling of debris‐covered glaciers.
KW - debris-covered glacier
KW - turbulent fluxes
KW - energy balance
KW - melt model
KW - glacier meteorology
U2 - 10.1029/2009JD013224
DO - 10.1029/2009JD013224
M3 - Article
SN - 0148-0227
VL - 115
JO - Journal of Geophysical Research
JF - Journal of Geophysical Research
IS - D9
ER -