TY - JOUR
T1 - Microplastic pollution on historic facades
T2 - Hidden ‘sink' or urban threat?
AU - Wilhelm, Katrin
AU - Woor, Sam
AU - Jackson, Michelle
AU - Albini, Dania
AU - Young, Neil
AU - Karamched, Phani
AU - Policarpo Wright, Miriam C.
AU - Grau-Bove, Josep
AU - Orr, Scott Allan
AU - Longman, Jack
AU - de Kock, Tim
N1 - Funding information: This publication arises from research funded by the John Fell Oxford University Press Research Fund. Reference: 0009714.
PY - 2024/2/15
Y1 - 2024/2/15
N2 - Despite the increasing concerns surrounding the health and environmental risks of microplastics (MPs), the research focus has primarily been on their prevalence in air and the oceans, consequently neglecting their presence on urban facades, which are integral to our everyday environments. Therefore, there is a crucial knowledge gap in comprehending urban MP pollution. Our pioneering interdisciplinary study not only quantifies but also identifies MPs on historic facades, revealing their pervasive presence in a medium-sized urban area in the UK. In this case study, we estimated a mean density of 975,000 fibres/m^2 (0.10 fibres/mm^2) for fibre lengths between 30 and 1000 μm with a ratio of 1:5 for natural to artificial fibres. Our research identifies three groups of fibre length frequencies across varied exposure scenarios on the investigated urban facade. Sheltered areas (4m height) show a high prevalence of 60–120 μm and 180–240 μm fibres. In contrast, less sheltered areas at 3m exhibit lower fibre frequencies but similar lengths. Notably, the lowest area (2-1.5m) features longer fibres (300–1000 μm), while adjacent area S, near a faulty gutter, shows no fibres, highlighting the impact of exposure, altitude, and environmental variables on fibre distribution on urban facades. Our findings pave one of many necessary paths forward to determine the long-term fate of these fibres and provoke a pertinent question: do historic facades serve as an urban ‘sink’ that mitigates potentially adverse health impacts or amplifies the effects of mobile microplastics? Addressing MP pollution in urban areas is crucial for public health and sustainable cities. More research is required to understand the multi-scale factors behind MP pollution in large cities and to find mitigation strategies, paving the way for effective interventions and policies against this growing threat.
AB - Despite the increasing concerns surrounding the health and environmental risks of microplastics (MPs), the research focus has primarily been on their prevalence in air and the oceans, consequently neglecting their presence on urban facades, which are integral to our everyday environments. Therefore, there is a crucial knowledge gap in comprehending urban MP pollution. Our pioneering interdisciplinary study not only quantifies but also identifies MPs on historic facades, revealing their pervasive presence in a medium-sized urban area in the UK. In this case study, we estimated a mean density of 975,000 fibres/m^2 (0.10 fibres/mm^2) for fibre lengths between 30 and 1000 μm with a ratio of 1:5 for natural to artificial fibres. Our research identifies three groups of fibre length frequencies across varied exposure scenarios on the investigated urban facade. Sheltered areas (4m height) show a high prevalence of 60–120 μm and 180–240 μm fibres. In contrast, less sheltered areas at 3m exhibit lower fibre frequencies but similar lengths. Notably, the lowest area (2-1.5m) features longer fibres (300–1000 μm), while adjacent area S, near a faulty gutter, shows no fibres, highlighting the impact of exposure, altitude, and environmental variables on fibre distribution on urban facades. Our findings pave one of many necessary paths forward to determine the long-term fate of these fibres and provoke a pertinent question: do historic facades serve as an urban ‘sink’ that mitigates potentially adverse health impacts or amplifies the effects of mobile microplastics? Addressing MP pollution in urban areas is crucial for public health and sustainable cities. More research is required to understand the multi-scale factors behind MP pollution in large cities and to find mitigation strategies, paving the way for effective interventions and policies against this growing threat.
UR - http://www.scopus.com/inward/record.url?scp=85180533928&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2023.123128
DO - 10.1016/j.envpol.2023.123128
M3 - Article
C2 - 38097158
AN - SCOPUS:85180533928
SN - 0269-7491
VL - 343
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 123128
ER -