Microstructural enhancement and performance of additive manufactured titanium alloy grade 5 composite coatings

O. S. Fatoba*, S. A. Akinlabi, E. T. Akinlabi, L. C. Naidoo, A. A. Adediran, O. S. Odebiyi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The surface integrity of Titanium alloy may be improved by surface modification, to expand its availability for more diverse industrial applications. Additive manufacturing is a commercially competitive manufacturing technique with the possibility of altering the entire perception of design and fabrication. The study experimentally investigates the effects that Ytterbium Laser System process parameters, such as laser power, powder feed rate and traverse speed, has on the resultant microstructure of Ti-6Al-4V grade 5 alloy. The deposition process was conducted employing a 3kW (CW) Ytterbium Laser System (YLS-2000-TR) machine, coaxial to the reinforcement powder. The laser scanning speed and power were varied between the intervals of 1-1.2 m/min and 900-1000 W. All other parameters kept constant were the rate of gas flow, the spot diameter, and the rate of powder flow. The microstructure was characterized by grain size and morphology by using Optical Microscopy (OM) and Scanning Electron Microscopy (SEM). During the DLMD process, the thermal histories induced in the process led to the promotion of the transformed a+ß microstructure from the initial primary a microstructure; the growth and evolution of the distinct grain morphologies and stability of the alpha and beta structures upon increased and reduced structures. It was ascertained that by increasing the traverse speeds, the cooling rates increased, which resulted in the decrease in the width of the columnar grains.

Original languageEnglish
Title of host publicationAdvanced Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884492
DOIs
Publication statusPublished - 2020
Externally publishedYes
EventASME 2020 International Mechanical Engineering Congress and Exposition, IMECE 2020 - Virtual, Online
Duration: 16 Nov 202019 Nov 2020

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume2B-2020

Conference

ConferenceASME 2020 International Mechanical Engineering Congress and Exposition, IMECE 2020
CityVirtual, Online
Period16/11/2019/11/20

Keywords

  • Additive manufacturing
  • Microstructure
  • Process parameters
  • Rapid solidification
  • Titanium alloy

Cite this