Microstructure and mechanical behavior of porous tungsten skeletons synthesized by selected laser melting

Kai Zhou, Wenge Chen*, Yana Yang, Rong Li, Longlong Dong, Yongqing Fu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
10 Downloads (Pure)


Because of its high ductile-brittle transition temperature, tungsten (W) is normally alloyed with other metal elements in order to obtain high fracture strength, excellent thermal and electrical properties for industrial applications. For tungsten samples sintered using the conventional powder metallurgy methods, bonding among tungsten particles is normally through sintered necking process, thus without providing a good metallurgical bonding strength. In this paper, we proposed to apply additive manufacture methodology to synthesize two types of porous tungsten skeleton structures, honeycomb (65% porosity) and square skeleton (80% porosity), using a selective laser melting (SLM) method. Results showed that for both these skeleton structures, grains in the XY plane showed an equiaxed crystal appearance, whereas those in the YZ/XZ plane showed columnar patterns parallel to the Z axis. The measured porosities for these two types of skeletons were 52 vol% and 68 vol%, and their compressive strength values were 256 MPa and 149 MPa, respectively. Both their compressive strengths and hardness showed anisotropic behaviors, with their highest values along the direction of Z axis. Results also showed that fracture morphology and mechanisms of these skeletons under compression were quite different when they were compressed along different directions, mainly due to the formed columnar crystals of the skeletons along the Z axis. Fracture morphology along the Z axis showed transgranular fracture and tearing features, whereas those along X axis showed only intergranular fracture features.
Original languageEnglish
Article number105769
Number of pages9
JournalInternational Journal of Refractory Metals and Hard Materials
Early online date20 Dec 2021
Publication statusPublished - 1 Feb 2022


Dive into the research topics of 'Microstructure and mechanical behavior of porous tungsten skeletons synthesized by selected laser melting'. Together they form a unique fingerprint.

Cite this