Mid-Piacenzian variability of Nordic Seas surface circulation linked to terrestrial climatic change in Norway

Sina Panitz, Stijn De Schepper, Ulrich Salzmann, Paul E. Bachem, Bjørg Risebrobakken, Caroline Clotten, Emma Hocking

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
25 Downloads (Pure)

Abstract

During the mid-Piacenzian, Nordic Seas sea surface temperatures (SSTs) were higher than today. While SSTs provide crucial climatic information, on their own they do not allow a reconstruction of potential underlying changes in water masses and currents. A new dinoflagellate cyst record for Ocean Drilling Program (ODP) Site 642 is presented to evaluate changes in northward heat transport via the Norwegian Atlantic Current (NwAC) between 3.320 and 3.137 Ma. The record is compared with vegetation and SST reconstructions from Site 642 and SSTs from ODP Site 907, Iceland Sea, to identify links between SSTs, ocean currents and vegetation changes. The dinocyst record shows strong Atlantic water influence via the NwAC corresponds to higher-than-present SSTs and cool temperate vegetation during Marine Isotope Stage (MIS) transition M2–M1 and KM5. Reduced Atlantic water inflow relative to the warm stages coincides with near-41 modern SSTs and boreal vegetation during MIS M2, KM6 and KM4–KM2. During most of the studied interval, a strong SST gradient between sites 642 and 907 indicates the presence of a proto-Arctic Front (AF). An absent gradient during the first half of MIS KM6, due to reduced Atlantic water influence at Site 642 and warm, presumably Atlantic water reaching Site 907, is indicative of a weakened NwAC and EGC. We conclude that repeated changes in Atlantic water influence directly affect terrestrial climate and that an active NwAC is needed for an AF to develop. Obliquity forcing may have played a role, but the correlation is not consistent.
Original languageEnglish
Pages (from-to)1336-1351
Number of pages16
JournalPaleoceanography
Volume32
Issue number12
Early online date9 Nov 2017
DOIs
Publication statusPublished - 4 Dec 2017

Fingerprint

Dive into the research topics of 'Mid-Piacenzian variability of Nordic Seas surface circulation linked to terrestrial climatic change in Norway'. Together they form a unique fingerprint.

Cite this