Minimum performance requirements for microbial fuel cells to achieve energy-neutral wastewater treatment

Zachary A. Stoll, Jan Dolfing, Pei Xu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Microbial fuel cells (MFCs) have recently achieved energy-positive wastewater treatment at pilot scale. Despite these achievements, there is still a limited understanding as to whether all wastewaters contain sufficient amounts of energy and, if so, whether MFCs can capture a sufficient amount of energy to offset electrical energy requirements in the wastewater treatment process. Currently, there are no tools or methods available that can determine whether an MFC can be energy-neutral a priori. To address this, we derived a simple relationship by setting the electrical energy requirements of a wastewater treatment facility equal to the net energy output of the MFC, such that the resulting expression describes the minimum chemical oxygen demand (COD) removal needed to achieve energy-neutral treatment. The resulting equation is simply a function of electrical energy requirements, Coulombic Efficiency, and cell voltage. This work provides the first ever quantitative method for determining if the MFCs are feasible to achieve energy-neutral treatment for a given wastewater and what level of performance is needed.

Original languageEnglish
Article number243
JournalWater (Switzerland)
Volume10
Issue number3
DOIs
Publication statusPublished - 27 Feb 2018
Externally publishedYes

Keywords

  • Chemical oxygen demand removal
  • Electrical energy demand
  • Energy analysis
  • Energy-neutral treatment
  • Microbial fuel cell
  • Organic degradation
  • Wastewater treatment
  • Water-energy

Fingerprint

Dive into the research topics of 'Minimum performance requirements for microbial fuel cells to achieve energy-neutral wastewater treatment'. Together they form a unique fingerprint.

Cite this