TY - JOUR
T1 - Mirror training to augment cross-education during resistance training: a hypothesis
AU - Howatson, Glyn
AU - Zult, Tjerk
AU - Farthing, Jonathan
AU - Zijdewind, Inge
AU - Hortobágyi, Tibor
PY - 2013/7/24
Y1 - 2013/7/24
N2 - Resistance exercise has been shown to be a potent stimulus for neuromuscular adaptations. These adaptations are not confined to the exercising muscle and have been consistently shown to produce increases in strength and neural activity in the contralateral, homologous resting muscle; a phenomenon known as cross-education. This observation has important clinical applications for those with unilateral dysfunction given that cross-education increases strength and attenuates atrophy in immobilized limbs. Previous evidence has shown that these improvements in the transfer of strength are likely to reside in areas of the brain, some of which are common to the mirror neuron system (MNS). Here we examine the evidence for the, as yet, untested hypothesis that cross-education might benefit from observing our own motor action in a mirror during unimanual resistance training, thereby activating the MNS. The hypothesis is based on neuroanatomical evidence suggesting brain areas relating to the MNS are activated when a unilateral motor task is performed with a mirror. This theory is timely because of the growing body of evidence relating to the efficacy of cross-education. Hence, we consider the clinical applications of mirror training as an adjuvant intervention to cross-education in order to engage the MNS, which could further improve strength and reduce atrophy in dysfunctional limbs during rehabilitation.
AB - Resistance exercise has been shown to be a potent stimulus for neuromuscular adaptations. These adaptations are not confined to the exercising muscle and have been consistently shown to produce increases in strength and neural activity in the contralateral, homologous resting muscle; a phenomenon known as cross-education. This observation has important clinical applications for those with unilateral dysfunction given that cross-education increases strength and attenuates atrophy in immobilized limbs. Previous evidence has shown that these improvements in the transfer of strength are likely to reside in areas of the brain, some of which are common to the mirror neuron system (MNS). Here we examine the evidence for the, as yet, untested hypothesis that cross-education might benefit from observing our own motor action in a mirror during unimanual resistance training, thereby activating the MNS. The hypothesis is based on neuroanatomical evidence suggesting brain areas relating to the MNS are activated when a unilateral motor task is performed with a mirror. This theory is timely because of the growing body of evidence relating to the efficacy of cross-education. Hence, we consider the clinical applications of mirror training as an adjuvant intervention to cross-education in order to engage the MNS, which could further improve strength and reduce atrophy in dysfunctional limbs during rehabilitation.
KW - mirror neuron system
KW - rehabilitation
KW - recovery
KW - contralateral adaptations
KW - strength training
U2 - 10.3389/fnhum.2013.00396
DO - 10.3389/fnhum.2013.00396
M3 - Article
VL - 7
SP - 1
EP - 11
JO - Frontiers in Human Neuroscience
JF - Frontiers in Human Neuroscience
SN - 1662-5161
IS - 396
ER -