Abstract
Unprecedented rates of climate change in the Arctic are causing altered land to ocean transport of dissolved organic matter (DOM) and subsequent processing in the Arctic Ocean. Low salinity waters have been suggested as hotspots for DOM dynamics. Although a wide range of biogeochemical processes have been observed in temperate and tropical estuaries, very little is known about DOM behavior at the Arctic land-ocean interface. Here, we use dissolved organic carbon (DOC) concentration, DOM absorption properties and ultrahigh resolution mass spectrometry to assess DOM mixing behavior at the Yukon and Kolyma land-ocean interface. Mixing behavior varied seasonally in the Yukon River. During freshet, despite high spatial variability, DOC concentration was depleted ~10% compared to conservative mixing, however aromatic DOM was enriched through mid-salinity (≤15). In late summer, DOC concentration was ~20% depleted at mid-salinity, yet DOM composition reflected enhanced in situ production compared to conservative mixing. In the Kolyma, DOC concentration suggested non-conservative loss at salinity
Original language | English |
---|---|
Article number | 104281 |
Journal | Marine Chemistry |
Volume | 255 |
Early online date | 20 Jul 2023 |
DOIs | |
Publication status | Published - 20 Sept 2023 |
Keywords
- Dissolved organic matter
- Salinity mixing
- Large Arctic estuaries
- Arctic C biogeochemistry