TY - JOUR
T1 - Modeling influence of weather variables on energy consumption in an agricultural research institute in Ibadan, Nigeria
AU - Abu, Rahaman
AU - Amakor, John
AU - Kazeem, Rasaq
AU - Olugasa, Temilola
AU - Ajide, Olusegun
AU - Idusuyi, Nosa
AU - Jen, Tien-Chien
AU - Akinlabi, Esther
PY - 2024/1/30
Y1 - 2024/1/30
N2 - Climate change is having a significant impact on weather variables like temperature, humidity, precipitation, solar radiation, daylight duration, wind speed, etc. These weather variables are key indicators that affect electricity demand and consumption. Hence, understanding the significance of weather elements on energy needs and consumption is important to be able to adapt, strategize, and predict the effect of the changing climate on the required energy of an organization. This study aims to investigate the relationship between changing weather elements and electricity consumption, employing Multivariate Linear Regression (MLR), Support Vector Regressions (SVR), and Artificial Neural Network (ANN) models to predict the effect of weather changes on energy consumption. The following approaches were engaged for this study: Creating a catalog of weather elements and parameters of energy need or its consumption; analyzing and correlating electrical power consumption to weather factors; and developing prediction models—MLR, SVR, and ANN to predict the significance of the change in the variables of weather on the electrical energy consumption. Among the weather variables considered, temperature emerged as the most influential factor affecting electricity consumption, displaying the highest correlation. The monthly total pattern for electricity use for the case study area followed a similar pattern as the mean apparent temperature. Of the three models (MLR, SVR, and ANN) developed in this study, the ANN model yielded the best predictive performance, with Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) of 2.733%, 1.292%, and 4.66%, respectively. Notably, the ANN model outperformed the other models (MLR and SVR) by more than 20% across the predictive performance metrics employed.
AB - Climate change is having a significant impact on weather variables like temperature, humidity, precipitation, solar radiation, daylight duration, wind speed, etc. These weather variables are key indicators that affect electricity demand and consumption. Hence, understanding the significance of weather elements on energy needs and consumption is important to be able to adapt, strategize, and predict the effect of the changing climate on the required energy of an organization. This study aims to investigate the relationship between changing weather elements and electricity consumption, employing Multivariate Linear Regression (MLR), Support Vector Regressions (SVR), and Artificial Neural Network (ANN) models to predict the effect of weather changes on energy consumption. The following approaches were engaged for this study: Creating a catalog of weather elements and parameters of energy need or its consumption; analyzing and correlating electrical power consumption to weather factors; and developing prediction models—MLR, SVR, and ANN to predict the significance of the change in the variables of weather on the electrical energy consumption. Among the weather variables considered, temperature emerged as the most influential factor affecting electricity consumption, displaying the highest correlation. The monthly total pattern for electricity use for the case study area followed a similar pattern as the mean apparent temperature. Of the three models (MLR, SVR, and ANN) developed in this study, the ANN model yielded the best predictive performance, with Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) of 2.733%, 1.292%, and 4.66%, respectively. Notably, the ANN model outperformed the other models (MLR and SVR) by more than 20% across the predictive performance metrics employed.
KW - Energy Engineering and Power Technology
KW - Fuel Technology
KW - Renewable Energy, Sustainability and the Environment
KW - ANN
KW - MLR
KW - weather variable
KW - energy consumption
KW - SVR
UR - http://www.scopus.com/inward/record.url?scp=85188824829&partnerID=8YFLogxK
U2 - 10.3934/energy.2024012
DO - 10.3934/energy.2024012
M3 - Article
SN - 2333-8334
VL - 12
SP - 256
EP - 270
JO - AIMS Energy
JF - AIMS Energy
IS - 1
ER -