TY - JOUR
T1 - Modelling and design of hierarchical fibre-graphene nanoplatelets reinforced elasto-viscoplastic polymer matrix composites to improve crashworthiness and energy absorption
AU - Elmasry, Ahmed
AU - Azoti, Wiyao
AU - Elmarakbi, Ahmed
PY - 2023/4/15
Y1 - 2023/4/15
N2 - Today, light-weighting for energy efficiency without sacrificing safety and performance attributes has become a primary focus in the automotive industry. In the field of modelling graphene nanocomposites' structural applications under severe loading conditions, literature is limited. In addition, the existing work only employs the so-called one-site (OS) modelling. This study develops an approach to study 3-phases hierarchical fibres/graphene nanoplatelets (GNPs)-reinforced polymer matrix composites utilising OS modelling and what is known as multi-site (MS) modelling. The MS modelling accounts for material anisotropy considering the interaction between neighbouring inclusions. Applicability of both models is then assessed for automotive components' crashworthiness response under combined mechanical and rate-dependent plasticity or viscoplasticity behaviours. A coherent micromechanical design is employed with elastic platelets and elasto-viscoplastic matrix assumptions. The micromechanics modelling combines rate-dependent constitutive laws and thermomechanical properties for the nonlinear response of composite materials. The heterogeneous material problem is resolved in the first instance for a thermoelastic case. The thermomechanical kinematic integral equation is used to derive the strain concentration tensor. Using the generalised Mori–Tanaka (GMT) homogenisation scheme, effective thermomechanical properties are obtained. For the nonlinear behaviour, a linearisation of the classical J2 rate-dependent model is considered with an isotropic hardening. Based on an implicit integration scheme, a consistent tangent modulus is obtained and serves as a uniform modulus for homogenisation of the rate-dependent thermomechanical composite material. An application is therefore performed on a short glass -fibres/graphene nanoplatelet/ Polyamide-Nylon 6 (GNP/PA6) composite. The current study's archival value is to provide an auspicious approach for a consistent design and application of this category of materials for automotive structural components.
AB - Today, light-weighting for energy efficiency without sacrificing safety and performance attributes has become a primary focus in the automotive industry. In the field of modelling graphene nanocomposites' structural applications under severe loading conditions, literature is limited. In addition, the existing work only employs the so-called one-site (OS) modelling. This study develops an approach to study 3-phases hierarchical fibres/graphene nanoplatelets (GNPs)-reinforced polymer matrix composites utilising OS modelling and what is known as multi-site (MS) modelling. The MS modelling accounts for material anisotropy considering the interaction between neighbouring inclusions. Applicability of both models is then assessed for automotive components' crashworthiness response under combined mechanical and rate-dependent plasticity or viscoplasticity behaviours. A coherent micromechanical design is employed with elastic platelets and elasto-viscoplastic matrix assumptions. The micromechanics modelling combines rate-dependent constitutive laws and thermomechanical properties for the nonlinear response of composite materials. The heterogeneous material problem is resolved in the first instance for a thermoelastic case. The thermomechanical kinematic integral equation is used to derive the strain concentration tensor. Using the generalised Mori–Tanaka (GMT) homogenisation scheme, effective thermomechanical properties are obtained. For the nonlinear behaviour, a linearisation of the classical J2 rate-dependent model is considered with an isotropic hardening. Based on an implicit integration scheme, a consistent tangent modulus is obtained and serves as a uniform modulus for homogenisation of the rate-dependent thermomechanical composite material. An application is therefore performed on a short glass -fibres/graphene nanoplatelet/ Polyamide-Nylon 6 (GNP/PA6) composite. The current study's archival value is to provide an auspicious approach for a consistent design and application of this category of materials for automotive structural components.
KW - FE modelling
KW - Graphene nanoplatelets
KW - Micromechanics
KW - Multi-site modelling
KW - Polymer matrix composites
KW - RVE
KW - Thermo elastic–viscoplasticity
UR - http://www.scopus.com/inward/record.url?scp=85148002649&partnerID=8YFLogxK
U2 - 10.1016/j.compstruct.2023.116705
DO - 10.1016/j.compstruct.2023.116705
M3 - Article
SN - 0263-8223
VL - 310
JO - Composite Structures
JF - Composite Structures
M1 - 116705
ER -