TY - JOUR
T1 - Multiangle social network recommendation algorithms and similarity network evaluation
AU - Hu, Jinyu
AU - Gao, Zhiwei
AU - Pan, Weisen
PY - 2013/7
Y1 - 2013/7
N2 - Multiangle social network recommendation algorithms (MSN) and a new assessmentmethod, called similarity network evaluation (SNE), are both proposed. From the viewpoint of six dimensions, the MSN are classified into six algorithms, including user-based algorithmfromresource point (UBR), user-based algorithmfromtag point (UBT), resource-based algorithm fromtag point (RBT), resource-based algorithm from user point (RBU), tag-based algorithm from resource point (TBR), and tag-based algorithm from user point (TBU). Compared with the traditional recall/precision (RP) method, the SNE is more simple, effective, and visualized. The simulation results show that TBR and UBR are the best algorithms, RBU and TBU are the worst ones, and UBT and RBT are in the medium levels.
AB - Multiangle social network recommendation algorithms (MSN) and a new assessmentmethod, called similarity network evaluation (SNE), are both proposed. From the viewpoint of six dimensions, the MSN are classified into six algorithms, including user-based algorithmfromresource point (UBR), user-based algorithmfromtag point (UBT), resource-based algorithm fromtag point (RBT), resource-based algorithm from user point (RBU), tag-based algorithm from resource point (TBR), and tag-based algorithm from user point (TBU). Compared with the traditional recall/precision (RP) method, the SNE is more simple, effective, and visualized. The simulation results show that TBR and UBR are the best algorithms, RBU and TBU are the worst ones, and UBT and RBT are in the medium levels.
U2 - 10.1155/2013/248084
DO - 10.1155/2013/248084
M3 - Article
SN - 1110-757X
VL - 2013
SP - 248084
JO - Journal of Applied Mathematics
JF - Journal of Applied Mathematics
ER -