Nanostructured Ni2SeS on Porous-Carbon Skeletons as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium

Yakun Tian, Yuxi Zhang, Aijian Huang, Ming Wen, qingsheng Wu, Long Zhao, mingkui Wang, Yan Shen, Zhiguo Wang, Richard Fu

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Nickel dichalcogenides have received extensive attention as promising noble-metal-free nanocatalysts for a hydrogen evolution reaction. Nonetheless, their catalytic performance is restricted by the sluggish reaction kinetics, limited exposed active sites, and poor conductivity. In this work, we report on an effective strategy to solve those problems by using an as-designed new porous-C/Ni2SeS nanocatalyst with the Ni2SeS nanostubs anchored on with porous-carbon skeletons process. On the basis of three advantages, as the enhancement of the intrinsic activity using the ternary sulfoselenide, increased number of exposed active sites due to the 3D hollow substrate, and increased conductivity caused by porous-carbon skeletons, the resulting porous-C/Ni2SeS requires an overpotential of only 121 mV at a current density of 10 mA cm–2 with a Tafel slope of 78 mV dec–1 for hydrogen evolution in acidic media and a good long-term stability. Density functional theory calculations also show that the Gibbs free energy of hydrogen adsorption of the Ni2SeS was −0.23 eV, which not only is close to the ideal value (0 eV) and Pt reference (−0.09 eV) but also is lower than those of NiS2 and NiSe2; large electrical states exist in the vicinity of the Fermi level, which further improves its electrocatalytic performance. This work provides new insights into the rational design of ternary dichalcogenides and hollow structure materials for practical applications in HER catalysis and energy fields.
Original languageEnglish
Pages (from-to)6018-6025
Number of pages8
JournalInorganic Chemistry
Volume59
Issue number9
Early online date21 Apr 2020
DOIs
Publication statusPublished - 4 May 2020

Fingerprint

Dive into the research topics of 'Nanostructured Ni2SeS on Porous-Carbon Skeletons as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium'. Together they form a unique fingerprint.

Cite this