Abstract
The development of multifunctional and efficient electromagnetic wave absorbing materials is a challenging research hotspot. Here, the magnetized Ni flower/MXene hybrids are successfully assembled on the surface of melamine foam (MF) through electrostatic self-assembly and dip-coating adsorption process, realizing the integration of microwave absorption, infrared stealth, and flame retardant. Remarkably, the Ni/MXene-MF achieves a minimum reflection loss (RLmin) of − 62.7 dB with a corresponding effective absorption bandwidth (EAB) of 6.24 GHz at 2 mm and an EAB of 6.88 GHz at 1.8 mm. Strong electromagnetic wave absorption is attributed to the three-dimensional magnetic/conductive networks, which provided excellent impedance matching, dielectric loss, magnetic loss, interface polarization, and multiple attenuations. In addition, the Ni/MXene-MF endows low density, excellent heat insulation, infrared stealth, and flame-retardant functions. This work provided a new development strategy for the design of multifunctional and efficient electromagnetic wave absorbing materials.
Original language | English |
---|---|
Article number | 63 |
Number of pages | 16 |
Journal | Nano-Micro Letters |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - 21 Feb 2022 |
Externally published | Yes |
Keywords
- Ni-MXene/Melamine foam
- Microwave absorption
- Heat insulation
- Infrared stealth
- Flame-retardant