Abstract
The three-dimensional (3D) nonlinear dynamics of an axially accelerating beam is examined numerically taking into account all of the longitudinal, transverse, and lateral displacements and inertia. Hamilton's principle is employed in order to derive the nonlinear partial differential equations governing the longitudinal, transverse, and lateral motions. These equations are transformed into a set of nonlinear ordinary differential equations by means of the Galerkin discretization technique. The nonlinear global dynamics of the system is then examined by time-integrating the discretized equations of motion. The results are presented in the form of bifurcation diagrams of Poincaré maps, time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms (FFTs).
Original language | English |
---|---|
Article number | 011010 |
Number of pages | 16 |
Journal | Journal of Computational and Nonlinear Dynamics |
Volume | 11 |
Issue number | 1 |
Early online date | 30 Jun 2015 |
DOIs | |
Publication status | Published - 1 Jan 2016 |
Keywords
- axially accelerating beams
- bifurcation diagrams
- nonlinear dynamical behavior
- three-dimensional (3D) modeling