Nonlinear optimal control for gas-turbine power generation units

G. Rigatos, K. Busawon, P. Siano, M. Abbaszadeh

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A nonlinear optimal (H-infinity) control approach is proposed for an electric power unit that comprises a gas-turbine and a synchronous-generator. The control method aims at synchronizing the generator with the grid's frequency while also optimizing the fuel's consumption by the gas-turbine. At a first stage the state-space model of the the power unit is linearized at a temporary operating point which is updated at each iteration of the control method. The linearization procedure relies on Taylor series expansion and on the computation of the system's Jacobian matrices. At a second stage, an H-infinity feedback controller is designed for the approximately linearized model of the power unit. This allows to solve the optimal control problem of the power generation unit, despite the effects of model inaccuracy and exogenous disturbances. The feedback gain of the H-infinity controller, is obtained after solving an algebraic Riccati equation at each time-step of the control method. Finally, Lyapunov analysis is used to prove the global asymptotic stability properties of the control scheme.

Original languageEnglish
Title of host publicationProceedings of the 2018 5th International Symposium on Environment-Friendly Energies and Applications, EFEA 2018
EditorsEzio Santini, Stefano Di Gennaro, Claudio Bruzzese
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538655177
ISBN (Print)9781538655184
DOIs
Publication statusPublished - 21 Jan 2019
Event5th International Symposium on Environment-Friendly Energies and Applications, EFEA 2018 - Rome, Italy
Duration: 24 Sep 201826 Sep 2018

Conference

Conference5th International Symposium on Environment-Friendly Energies and Applications, EFEA 2018
CountryItaly
CityRome
Period24/09/1826/09/18

Fingerprint Dive into the research topics of 'Nonlinear optimal control for gas-turbine power generation units'. Together they form a unique fingerprint.

Cite this