Abstract
The present study investigates the nonlinear resonant behavior of a microbeam over its buckled (non-trivial) configuration. The system is assumed to be subjected to an axial load along with a distributed transverse harmonic load. The axial load is increased leading the system to lose the stability via a pitchfork bifurcation; the postbuckling configuration is obtained and the nonlinear resonant response of the system over the buckled state is examined. More specifically, the nonlinear equation of motion is obtained employing Hamilton's principle along with the modified couple stress theory. The continuous system is truncated into a system with finite degrees of freedom; the Galerkin scheme is employed to discretize the nonlinear partial differential equation of motion into a set of ordinary differential equations. This set of equations is solved numerically employing the pseudo-arclength continuation technique; first a nonlinear static analysis is performed upon this set of equations so as to obtain the onset of buckling (supercritical pitchfork bifurcation) and the buckled configuration of the microbeam. The frequency-response and force-response curves of the system are then constructed over the buckled configurations. A comparison is made between the frequency-response curves obtained by means of the modified couple stress and the classical theories. The effect of different system parameters on the frequency-response and force-response curves is also examined.
Original language | English |
---|---|
Pages (from-to) | 297-307 |
Number of pages | 11 |
Journal | Applied Physics A: Materials Science and Processing |
Volume | 113 |
Issue number | 2 |
Early online date | 24 Aug 2013 |
DOIs | |
Publication status | Published - 1 Nov 2013 |
Keywords
- Excitation Frequency
- Force Amplitude
- Pitchfork Bifurcation
- Length Scale Parameter
- Modify Couple Stress Theory