TY - JOUR
T1 - Novel antennal lobe substructures revealed in the small hive beetle Aethina tumida
AU - Kollmann, Martin
AU - Rupenthal, Anna Lena
AU - Neumann, Peter
AU - Huetteroth, Wolf
AU - Schachtner, Joachim
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - The small hive beetle, Aethina tumida, is an emerging pest of social bee colonies. A. tumida shows a specialized life style for which olfaction seems to play a crucial role. To better understand the olfactory system of the beetle, we used immunohistochemistry and 3-D reconstruction to analyze brain structures, especially the paired antennal lobes (AL), which represent the first integration centers for odor information in the insect brain. The basic neuroarchitecture of the A. tumida brain compares well to the typical beetle and insect brain. In comparison to other insects, the AL are relatively large in relationship to other brain areas, suggesting that olfaction is of major importance for the beetle. The AL of both sexes contain about 70 olfactory glomeruli with no obvious size differences of the glomeruli between sexes. Similar to all other insects including beetles, immunostaining with an antiserum against serotonin revealed a large cell that projects from one AL to the contralateral AL to densely innervate all glomeruli. Immunostaining with an antiserum against tachykinin-related peptides (TKRP) revealed hitherto unknown structures in the AL. Small TKRP-immunoreactive spherical substructures are in both sexes evenly distributed within all glomeruli. The source for these immunoreactive islets is very likely a group of about 80 local AL interneurons. We offer two hypotheses on the function of such structures.
AB - The small hive beetle, Aethina tumida, is an emerging pest of social bee colonies. A. tumida shows a specialized life style for which olfaction seems to play a crucial role. To better understand the olfactory system of the beetle, we used immunohistochemistry and 3-D reconstruction to analyze brain structures, especially the paired antennal lobes (AL), which represent the first integration centers for odor information in the insect brain. The basic neuroarchitecture of the A. tumida brain compares well to the typical beetle and insect brain. In comparison to other insects, the AL are relatively large in relationship to other brain areas, suggesting that olfaction is of major importance for the beetle. The AL of both sexes contain about 70 olfactory glomeruli with no obvious size differences of the glomeruli between sexes. Similar to all other insects including beetles, immunostaining with an antiserum against serotonin revealed a large cell that projects from one AL to the contralateral AL to densely innervate all glomeruli. Immunostaining with an antiserum against tachykinin-related peptides (TKRP) revealed hitherto unknown structures in the AL. Small TKRP-immunoreactive spherical substructures are in both sexes evenly distributed within all glomeruli. The source for these immunoreactive islets is very likely a group of about 80 local AL interneurons. We offer two hypotheses on the function of such structures.
KW - 3D reconstruction
KW - Insect
KW - Neuropeptide
KW - Olfactory system
KW - Serotonin
UR - http://www.scopus.com/inward/record.url?scp=84958773253&partnerID=8YFLogxK
U2 - 10.1007/s00441-015-2282-9
DO - 10.1007/s00441-015-2282-9
M3 - Article
C2 - 26496732
AN - SCOPUS:84958773253
SN - 0302-766X
VL - 363
SP - 679
EP - 692
JO - Cell and Tissue Research
JF - Cell and Tissue Research
IS - 3
ER -