TY - JOUR
T1 - Novel Iron Chelator SK4 Drives Cytotoxicity through Inhibiting Mitochondrial Metabolism in Ovarian and Triple Negative Breast Cancer Cell Lines
AU - Abdelaal, Gina
AU - Carter, Andrew
AU - Cheung, William
AU - Panayiotidis, Mihalis I.
AU - Racey, Seth
AU - Tétard, David
AU - Veuger, Stephany
PY - 2023/7/24
Y1 - 2023/7/24
N2 - Anti-cancer therapy by iron chelation has been shown to inhibit many cellular processes including DNA replication, mitochondrial metabolism and oncogenic signalling pathways (e.g., EGFR). Iron chelator SK4 represents a double pronged approach towards treating cancer. SK4 enters through LAT1, a commonly overexpressed amino acid transporter in tumours, thus targeting iron addiction and LAT1 overexpression. The aim of this study was to characterise the mode of action of SK4 through proteomics, metabolomics, lipidomics and seahorse real-time analysis in ovarian cell line SKOV3 and triple negative breast cancer cell line MDA MB 231. Pathway enrichment of proteomics data showed an overrepresentation of metabolism related pathways. Metabolic change after SK4 exposure have been confirmed in investigations of changes in basal and maximal mitochondrial respiration using seahorse real-time analysis of mitochondrial metabolism. Metabolomics also showed an increase in AMP and glucose-1-phosphate. Interestingly, our lipidomics data show a decrease in phospholipid synthesis in the SKOV3 cells which is in contrast with previous data which showed an upregulation of ceramide driven apoptosis. In summary, our data highlight impairment of energy metabolism as a mechanism of action underlying SK4 apoptosis, but also suggest a potential role of ceramide induction in the phenotypic outcome of the cell model.
AB - Anti-cancer therapy by iron chelation has been shown to inhibit many cellular processes including DNA replication, mitochondrial metabolism and oncogenic signalling pathways (e.g., EGFR). Iron chelator SK4 represents a double pronged approach towards treating cancer. SK4 enters through LAT1, a commonly overexpressed amino acid transporter in tumours, thus targeting iron addiction and LAT1 overexpression. The aim of this study was to characterise the mode of action of SK4 through proteomics, metabolomics, lipidomics and seahorse real-time analysis in ovarian cell line SKOV3 and triple negative breast cancer cell line MDA MB 231. Pathway enrichment of proteomics data showed an overrepresentation of metabolism related pathways. Metabolic change after SK4 exposure have been confirmed in investigations of changes in basal and maximal mitochondrial respiration using seahorse real-time analysis of mitochondrial metabolism. Metabolomics also showed an increase in AMP and glucose-1-phosphate. Interestingly, our lipidomics data show a decrease in phospholipid synthesis in the SKOV3 cells which is in contrast with previous data which showed an upregulation of ceramide driven apoptosis. In summary, our data highlight impairment of energy metabolism as a mechanism of action underlying SK4 apoptosis, but also suggest a potential role of ceramide induction in the phenotypic outcome of the cell model.
U2 - 10.3390/biomedicines11072073
DO - 10.3390/biomedicines11072073
M3 - Article
SN - 2227-9059
VL - 11
JO - Biomedicines
JF - Biomedicines
IS - 7
M1 - 2073
ER -