Optimisation of the efficiency of carbon fibre heating elements implanted in wind turbine blades

Benjamin Smith, Alireza Maheri

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

1 Citation (Scopus)

Abstract

Ice accretion on wind turbine blades operating in cold climates decreases the aerodynamic efficiency and can have negative impacts on the structural integrity. This paper presents the results of a study on the concept of using implanted resistive heating for the anti-icing of wind turbine blades. A finite difference model is developed and used to perform transient heat transfer analysis of the implanted heating elements within the wind turbine rotor blade. The heat transfer module is linked to a genetic algorithm optimiser module to find the optimum depth of implanted heating elements which minimises the energy consumption of the system subject to manufacturing and operational constraints. The control of the system has been considered by observing the system performance using the results generated by the optimisation process.
Original languageEnglish
Title of host publicationProceedings of the 2012 2nd International Symposium On Environment Friendly Energies And Applications
Place of PublicationPiscataway, NJ
PublisherIEEE
Pages410-414
ISBN (Print)978-1467329095
DOIs
Publication statusPublished - 2012
EventEFEA 2012: 2nd International Symposium on Environment Friendly Energies and Applications - Northumbria University, Newcastle upon Tyne, UK
Duration: 27 Jun 2012 → …

Conference

ConferenceEFEA 2012: 2nd International Symposium on Environment Friendly Energies and Applications
Period27/06/12 → …

Keywords

  • anti-icing
  • carbon fibre
  • de-icing
  • icing problem
  • resistive heating
  • wind turbine blade

Fingerprint

Dive into the research topics of 'Optimisation of the efficiency of carbon fibre heating elements implanted in wind turbine blades'. Together they form a unique fingerprint.

Cite this