Optimisation of the performance characteristics of Cu-Al-Mo thin film resistors

Research output: ThesisDoctoral Thesis


This thesis presents a novel approach to the manufacture of thin film resistors using a new low resistivity material of copper, aluminium and molybdenum, which under industrially achievable optimised process conditions, is shown to be capable of producing excellent temperature coefficient of resistance (TCR) and long term stability properties. Previous developments in the field of thin film resistors have mainly centred around the well established resistive materials such as nickel-chromium, tantalum-nitride and chromium-silicon-monoxide. However recent market demands for lower value resistors have been difficult to satisfy with these materials due to their inherent high resistivity properties. This work focuses on the development and processing of a thin film resistor material system having lower resistivity and equal performance characteristics to that of the well established materials. An in depth review of thin film resistor materials and manufacturing processes was undertaken before the electrical properties of a binary thin film system of copper and aluminium were assessed. These properties were further enhanced through the incorporation of a third doping element, molybdenum, which was used to reduce the TCR and improve the electrical stability of the film. Once the desired chemical composition was established, the performance of the film was then fine tuned through optimisation of critical manufacturing process stages such as sputter deposition, heat treatment and laser adjustment. The results of these investigations were then analysed and used to generate a set of optimum process conditions, suitable for repeatedly producing thin film resistors in the 1 to 10? resistance range, to tolerances of less than ±0.25% and TCR values better than ±15ppm/oC.
Original languageEnglish
  • Penlington, Roger, Supervisor
Publication statusAccepted/In press - 20 Aug 2009


Dive into the research topics of 'Optimisation of the performance characteristics of Cu-Al-Mo thin film resistors'. Together they form a unique fingerprint.

Cite this