Performance comparison of intrusion detection systems and application of machine learning to Snort system

Syed Ali Raza Shah, Biju Issac*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

136 Citations (Scopus)
16 Downloads (Pure)


This study investigates the performance of two open source intrusion detection systems (IDSs) namely Snort and Suricata for accurately detecting the malicious traffic on computer networks. Snort and Suricata were installed on two different but identical computers and the performance was evaluated at 10 Gbps network speed. It was noted that Suricata could process a higher speed of network traffic than Snort with lower packet drop rate but it consumed higher computational resources. Snort had higher detection accuracy and was thus selected for further experiments. It was observed that the Snort triggered a high rate of false positive alarms. To solve this problem a Snort adaptive plug-in was developed. To select the best performing algorithm for Snort adaptive plug-in, an empirical study was carried out with different learning algorithms and Support Vector Machine (SVM) was selected. A hybrid version of SVM and Fuzzy logic produced a better detection accuracy. But the best result was achieved using an optimised SVM with firefly algorithm with FPR (false positive rate) as 8.6% and FNR (false negative rate) as 2.2%, which is a good result. The novelty of this work is the performance comparison of two IDSs at 10 Gbps and the application of hybrid and optimised machine learning algorithms to Snort.

Original languageEnglish
Pages (from-to)157-170
Number of pages14
JournalFuture Generation Computer Systems
Early online date21 Oct 2017
Publication statusPublished - 1 Mar 2018


Dive into the research topics of 'Performance comparison of intrusion detection systems and application of machine learning to Snort system'. Together they form a unique fingerprint.

Cite this