Performance evaluation of Independent Component Analysis in an iris recognition system

Imen Bouraoui, Salim Chitroub, Ahmed Bouridane

Research output: Contribution to conferencePaperpeer-review

1 Citation (Scopus)

Abstract

The overall performance of any iris recognition system relies on the performance of its components, which are preprocessing, feature extraction and matching. Feature extraction is the important step of such recognition system, but it is strongly dependent on the pre-processing step that is consisting of localising and normalising the iris. In this paper, Independent Component Analysis (ICA), which is a recently developed statistical method for data analysis, is applied for extracting the features for iris region of interest that are statistically independent. Based on some mathematical criteria, the performance of ICA is evaluated by using two different subsets of CASIA-V3 iris image database. The obtained results are convincing and some future improved research works are subsequently envisaged.
Original languageEnglish
DOIs
Publication statusPublished - May 2010
Event2010 IEEE/ACS International Conference on Computer Systems and Applications (AICCSA) - Hammamet, Tunisia
Duration: 1 May 2010 → …

Conference

Conference2010 IEEE/ACS International Conference on Computer Systems and Applications (AICCSA)
Period1/05/10 → …

Fingerprint Dive into the research topics of 'Performance evaluation of Independent Component Analysis in an iris recognition system'. Together they form a unique fingerprint.

Cite this