TY - JOUR
T1 - Performance fatigability and recovery after dynamic multi-joint maximal exercise in elbow flexors versus knee extensors.
AU - Colosio, Marta
AU - Rasica, Letizia
AU - Baldassarre, Giovanni
AU - Temesi, John
AU - Vernillo, Gianluca
AU - Marzorati, Mauro
AU - Porcelli, Simone
N1 - Funding information: This research was partially supported by an intramural grant from the Università degli Studi di Milano (#PSR2019_VERNILLO) to GV.
PY - 2022/9/1
Y1 - 2022/9/1
N2 - Elbow flexors (EF) and knee extensors (KE) have shown differences in performance fatigability and recovery of neuromuscular function after isometric and isotonic single-joint fatiguing contractions. However, dynamic multi-joint movements are more representative of real-world activities. The aim of the study was to assess central and peripheral mechanisms of fatigability after either arm-cranking or cycling. Ten physically-active men performed maximal incremental arm-cranking and cycling until task-failure. Maximal voluntary isometric contraction (MVIC) and electrically-evoked forces of both EF and KE were assessed before (PRE) and 1 (POST) and 20 (POST20) min after exercise. At POST, MVIC decreased similarly to 76 ± 8% and 81 ± 7% (both P < 0.001) of PRE for EF and KE, respectively. MVIC force remained lower than PRE at POST20 for both EF and KE (85 ± 8% vs. 95 ± 3% of PRE, P ≤ 0.033), having recovered less in EF than KE (P = 0.003). Electrically-evoked forces decreased similarly from PRE to POST in EF and KE (all P > 0.05). At POST20, the ratio of low-to-high frequency doublets was lower in EF than KE (75 ± 13% vs. 85 ± 10% of PRE; P ≤ 0.034). Dynamic maximal incremental exercise acutely induced similar magnitudes of MVIC and evoked forces loss in EF and KE. However, at POST20, impaired MVIC recovery and lower ratio of low-to-high frequency doublets in EF compared to KE suggests the recovery of neuromuscular function after dynamic maximal exercises is specific to and dependent on changes within the muscles investigated.
AB - Elbow flexors (EF) and knee extensors (KE) have shown differences in performance fatigability and recovery of neuromuscular function after isometric and isotonic single-joint fatiguing contractions. However, dynamic multi-joint movements are more representative of real-world activities. The aim of the study was to assess central and peripheral mechanisms of fatigability after either arm-cranking or cycling. Ten physically-active men performed maximal incremental arm-cranking and cycling until task-failure. Maximal voluntary isometric contraction (MVIC) and electrically-evoked forces of both EF and KE were assessed before (PRE) and 1 (POST) and 20 (POST20) min after exercise. At POST, MVIC decreased similarly to 76 ± 8% and 81 ± 7% (both P < 0.001) of PRE for EF and KE, respectively. MVIC force remained lower than PRE at POST20 for both EF and KE (85 ± 8% vs. 95 ± 3% of PRE, P ≤ 0.033), having recovered less in EF than KE (P = 0.003). Electrically-evoked forces decreased similarly from PRE to POST in EF and KE (all P > 0.05). At POST20, the ratio of low-to-high frequency doublets was lower in EF than KE (75 ± 13% vs. 85 ± 10% of PRE; P ≤ 0.034). Dynamic maximal incremental exercise acutely induced similar magnitudes of MVIC and evoked forces loss in EF and KE. However, at POST20, impaired MVIC recovery and lower ratio of low-to-high frequency doublets in EF compared to KE suggests the recovery of neuromuscular function after dynamic maximal exercises is specific to and dependent on changes within the muscles investigated.
KW - arm cranking
KW - cycling
KW - fatigue
KW - incremental maximal exercise
KW - recovery
UR - http://www.scopus.com/inward/record.url?scp=85136909531&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00173.2021
DO - 10.1152/ajpregu.00173.2021
M3 - Article
SN - 0363-6119
VL - 323
SP - R300-R309
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 3
ER -