Physical properties of ZnxCd1-xS nanocrystalline layers synthesized by solution growth method

K. Nagamani, Vasudeva Reddy Minnam Reddy, Yekula Lingappa, Kotte Ramakrishna Reddy, Robert Miles

    Research output: Contribution to journalArticlepeer-review

    Abstract

    In recent years, zinc cadmium sulphide (ZnxCd1-xS) alloy compounds have paid much attention in the fields of opto-electronics, particularly in photovoltaic devices because of its tunable energy gap and the lattice parameters. The energy band gap of ZnxCd1-xS is controlled by the change of Zn-composition in order to suit the material properties with that of absorber material in solar cells. In this paper, we report on the effect of Zn-composition on physical properties of ZnxCd1-xS thin films deposited on corning glass substrates by solution growth method. The layers were prepared for different ‘x’ values that vary in the range, 0 – 1.0 at. %. The as-grown layers were characterized using EDAX, XRD, SEM, and UV-Vis-NIR spectrophotometers. All the layers showed a strong (002) plane as the preferred orientation that exhibited the hexagonal crystal structure. The composition of the layers agrees approximately with that of the elements in the solution. The films showed an average optical transmittance of 72 % at a zinc composition of 0.75 with a band gap of 3.88 eV.
    Original languageEnglish
    Pages (from-to)1-4
    JournalInternational Journal of Optoelectronic Engineering
    Volume2
    Issue number2
    DOIs
    Publication statusPublished - 2012

    Fingerprint

    Dive into the research topics of 'Physical properties of ZnxCd1-xS nanocrystalline layers synthesized by solution growth method'. Together they form a unique fingerprint.

    Cite this