Abstract
The Leidenfrost effect allows droplets to be transported on a virtually frictionless layer of vapor above a superheated substrate. The substrates are normally topographically structured using subtractive techniques to produce saw-tooth, herringbone, and other patterns and bulk heated, leading to significant challenges in energy consumption and controlled operation. Here, we propose a planar lithographic approach to levitate and propel droplets using temperature profiles, which can be spatially patterned and controlled in time. We show that micro-patterned electrodes can be heated and provide control of the pressure profile and the vapor flow. Using these almost featureless planar substrates, we achieve self-directed motion of droplets, with velocities of approximately 30 mms-1, without topographically structuring the substrate or introducing physical walls. Our approach has the potential to be integrated into applications, such as digital microfluidics, where frictionless and contactless droplet transport may be advantageous.
Original language | English |
---|---|
Article number | 081601 |
Pages (from-to) | 1-5 |
Number of pages | 5 |
Journal | Applied Physics Letters |
Volume | 117 |
Issue number | 8 |
DOIs | |
Publication status | Published - 24 Aug 2020 |