Polypropylene as a retrofitting material for shear walls

Enea Mustafaraj, Yavuz Yardim, Marco Corradi*, Antonio Borri

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

In recent years, on account of their excellent mechanical properties, composite materials (made of epoxy-bonded carbon, glass, or aramid fibers) have been used to reinforce masonry walls against in-plane actions. These materials have proven to be an effective solution for the strengthening of unreinforced masonry (URM) walls. Lately, research has shifted to the study of different types of fibers to avoid the use of epoxy adhesives, whose long-term behavior and compatibility with masonry are poor. This paper describes an experimental program that investigated the behavior of URM shear walls strengthened with two types of commercially available polypropylene products: short fibers (fiber length = 12 mm) and polypropylene nets. This investigation aimed to evaluate the influence of polypropylene reinforcement, embedded into an inorganic matrix, in terms of the improvement of the lateral load-carrying capacity, failure mechanism, ductility, and energy dissipation capacity of URM wall panels, where nine walls were subjected to in-plane loads using a racking test setup. The study showed that using two layers of polypropylene fibers embedded into a cementitious matrix greatly increased the in-plane load capacity of the brickwork masonry. On the other hand, the test results indicated that polypropylene nets, used as a repair method for cracked shear walls, cannot improve the structural performance of the walls.

Original languageEnglish
Article number2503
Number of pages22
JournalMaterials
Volume13
Issue number11
DOIs
Publication statusPublished - 1 Jun 2020

Fingerprint Dive into the research topics of 'Polypropylene as a retrofitting material for shear walls'. Together they form a unique fingerprint.

Cite this