Abstract
This study aims to investigate the postbuckling response of functionally graded (FG) nanoplates by using the nonlocal elasticity theory of Eringen to capture the size effect. In addition, Reddy’s third-order shear deformation theory is adopted to describe the kinematic relations, while von Kaman’s assumptions are used to account for the geometrical nonlinearity. In order to calculate the effective
material properties, the Mori-Tanaka scheme is adopted. Governing equations are derived based on the principle of virtual work. Isogeometric analysis (IGA) is employed as a discretization tool, which is able to satisfy the C1-continuity demand efficiently. The Newton-Raphson iterative technique with imperfection is employed to trace the postbuckling paths. Various numerical studies are carried out to examine the influences of gradient index, nonlocal effect, ratio of compressive loads, boundary condition, thickness ratio and aspect ratio on the postbuckling behaviour of FG nanoplates.
material properties, the Mori-Tanaka scheme is adopted. Governing equations are derived based on the principle of virtual work. Isogeometric analysis (IGA) is employed as a discretization tool, which is able to satisfy the C1-continuity demand efficiently. The Newton-Raphson iterative technique with imperfection is employed to trace the postbuckling paths. Various numerical studies are carried out to examine the influences of gradient index, nonlocal effect, ratio of compressive loads, boundary condition, thickness ratio and aspect ratio on the postbuckling behaviour of FG nanoplates.
Original language | English |
---|---|
Pages (from-to) | 13-20 |
Journal | Composite Structures |
Volume | 201 |
Early online date | 4 Jun 2018 |
DOIs | |
Publication status | Published - 1 Oct 2018 |
Keywords
- Postbuckling
- Nonlocal theory
- Functionally graded plates
- Isogeometric analysis