Prospect for bismuth/antimony chalcohalides based solar cells

Jizhou He, Xiaodong Hu, Zonghao Liu*, Wei Chen*, Giulia Longo*

*Corresponding author for this work

    Research output: Contribution to journalReview articlepeer-review

    36 Citations (Scopus)
    50 Downloads (Pure)

    Abstract

    Inorganic–organic hybrid lead halide perovskites are emerging optoelectronic materials for solar cell application. However, the toxicity concerns and poor stability largely hamper their practical applications. For these reasons, the search for “perovskite-inspired” alternatives, having the same advantages but overcoming the drawbacks of the lead-based one, has become an important sector in the field. Among the candidates, Bi3+ and Sb3+ containing materials are of great interest, due to their electronic structures resembling the Pb2+. Bismuth/antimony chalcohalides have been known for a long time as the potential absorber in photovoltaics, even if their performances are still low. Interestingly, pnictogen chalcohalides can be the stepping stone toward numerous quaternary compounds, including some perovskite structures. The understanding of the fundamental properties and the current limitations of both the starting ternary compounds and the final quaternary materials can allow the achievement of improved photovoltaic absorbers, stable, and efficient. In this review, the fundamental properties and device performances of many ternary pnictogen chalcohalides and the derived quaternary compounds are summarized, focusing on the different preparation strategies.
    Original languageEnglish
    Article number2306075
    Number of pages17
    JournalAdvanced Functional Materials
    Volume33
    Issue number48
    Early online date3 Sept 2023
    DOIs
    Publication statusPublished - 23 Nov 2023

    Keywords

    • bismuth/antimony chalcohalides
    • metal–chalcogenide bonds
    • solar cells

    Cite this