RdgBα reciprocally transfers PA and PI at ER–PM contact sites to maintain PI(4,5)P2 homoeostasis during phospholipase C signalling in Drosophila photoreceptors

Shamshad Cockcroft, Kathryn Garner, Shweta Yadav, Evelyn Gomez-Espinosa, Padinjat Raghu

Research output: Contribution to journalReview articlepeer-review

16 Citations (Scopus)

Abstract

Phosphatidylinositol (PI) is the precursor lipid for the synthesis of PI 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane (PM) and is sequentially phosphorylated by the lipid kinases, PI 4-kinase and phosphatidylinositol 4-phosphate (PI4P)-5-kinase. Receptor-mediated hydrolysis of PI(4,5)P2 takes place at the PM but PI resynthesis occurs at the endoplasmic reticulum (ER). Thus PI(4,5)P2 resynthesis requires the reciprocal transport of two key intermediates, phosphatidic acid (PA) and PI between the ER and the PM. PI transfer proteins (PITPs), defined by the presence of the PITP domain, can facilitate lipid transfer between membranes; the PITP domain comprises a hydrophobic cavity with dual specificity but accommodates a single phospholipid molecule. The class II PITP, retinal degeneration type B (RdgB)α is a multi-domain protein and its PITP domain can bind and transfer PI and PA. In Drosophila photoreceptors, a well-defined G-protein-coupled phospholipase Cβ (PLCβ) signalling pathway, phototransduction defects resulting from loss of RdgBα can be rescued by expression of the PITP domain provided it is competent for both PI and PA transfer. We propose that RdgBα proteins maintain PI(4,5)P2 homoeostasis after PLC activation by facilitating the reciprocal transport of PA and PI at ER–PM membrane contact sites.
Original languageEnglish
Pages (from-to)286-292
Number of pages7
JournalBiochemical Society Transactions
Volume44
Issue number1
Early online date9 Feb 2016
DOIs
Publication statusPublished - 15 Feb 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'RdgBα reciprocally transfers PA and PI at ER–PM contact sites to maintain PI(4,5)P2 homoeostasis during phospholipase C signalling in Drosophila photoreceptors'. Together they form a unique fingerprint.

Cite this