TY - JOUR
T1 - Regio- and conformational isomerization critical to design of efficient thermally-activated delayed fluorescence emitters
AU - Etherington, Marc K.
AU - Franchello, Flavio
AU - Gibson, Jamie
AU - Northey, Thomas
AU - Santos, Jose
AU - Ward, Jonathan S.
AU - Higginbotham, Heather F.
AU - Data, Przemyslaw
AU - Kurowska, Aleksandra
AU - Dos Santos, Paloma Lays
AU - Graves, David R.
AU - Batsanov, Andrei S.
AU - Dias, Fernando B.
AU - Bryce, Martin R.
AU - Penfold, Thomas J.
AU - Monkman, Andrew P.
PY - 2017/4/13
Y1 - 2017/4/13
N2 - Regio- and conformational isomerization are fundamental in chemistry, with profound effects upon physical properties, however their role in excited state properties is less developed. Here two regioisomers of bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide, a donor–acceptor–donor (D–A–D) thermally-activated delayed fluorescence (TADF) emitter, are studied. 2,8-bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide exhibits only one quasi-equatorial conformer on both donor sites, with charge-transfer (CT) emission close to the local triplet state leading to efficient TADF via spin-vibronic coupling. However, 3,7-bis(10H-phenothiazin-10 yl)dibenzo[b,d]thiophene-S,S-dioxide displays both a quasi-equatorial CT state and a higher-energy quasi-axial CT state. No TADF is observed in the quasi-axial CT emission. These two CT states link directly to the two folded conformers of phenothiazine. The presence of the low-lying local triplet state of the axial conformer also means that this quasi-axial CT is an effective loss pathway both photophysically and in devices. Importantly, donors or acceptors with more than one conformer have negative repercussions for TADF in organic light-emitting diodes.
AB - Regio- and conformational isomerization are fundamental in chemistry, with profound effects upon physical properties, however their role in excited state properties is less developed. Here two regioisomers of bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide, a donor–acceptor–donor (D–A–D) thermally-activated delayed fluorescence (TADF) emitter, are studied. 2,8-bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide exhibits only one quasi-equatorial conformer on both donor sites, with charge-transfer (CT) emission close to the local triplet state leading to efficient TADF via spin-vibronic coupling. However, 3,7-bis(10H-phenothiazin-10 yl)dibenzo[b,d]thiophene-S,S-dioxide displays both a quasi-equatorial CT state and a higher-energy quasi-axial CT state. No TADF is observed in the quasi-axial CT emission. These two CT states link directly to the two folded conformers of phenothiazine. The presence of the low-lying local triplet state of the axial conformer also means that this quasi-axial CT is an effective loss pathway both photophysically and in devices. Importantly, donors or acceptors with more than one conformer have negative repercussions for TADF in organic light-emitting diodes.
U2 - 10.1038/ncomms14987
DO - 10.1038/ncomms14987
M3 - Article
SN - 2041-1723
VL - 8
JO - Nature Communications
JF - Nature Communications
M1 - 14987
ER -