TY - JOUR
T1 - Regulation of urokinase receptor function and pericellular proteolysis by the integrin alpha(5)beta(1).
AU - Bass, Rosemary
AU - Ellis, Vincent
PY - 2009
Y1 - 2009
N2 - Interactions between the uPA receptor (uPAR) and various integrins, including alpha(5)beta(1), are known to modulate integrin-dependent cell adhesion, and we have shown that the integrin-associated tetraspanin protein CD82 down-regulates uPAR-dependent plasminogen activation by affecting alpha(5)beta(1) cellular localisation. Here we have investigated whether overexpression of alpha(5)beta(1) directly affects uPAR-dependent pericellular proteolysis. CHO cells overexpressing alpha(5)beta(1) were found to activate plasminogen at a rate up to 18-fold faster than B2CHO cells which are alpha(5)-deficient. This effect was dependent on the activation state of alpha(5)beta(1), as it was maximal in the presence of Mn(2+). To determine the role of uPAR-alpha(5)beta(1) interactions in this effect, we determined the adhesion of these cells to immobilised soluble uPAR (suPAR). Neither cell-type was found to adhere to suPAR, but both cell types were found to adhere to an anti-uPAR monoclonal antibody in a uPAR- and integrin-dependent manner. This adhesion was 10-fold greater in the absence of alpha(5)beta(1), possibly implicating the involvement of non-alpha(5)-integrins. Soluble forms of the various components were used to investigate the molecular basis of these effects, but no direct interactions could be demonstrated between alpha(5)beta(1) and either uPAR, uPA or uPA-uPAR complex. This suggests that assembly of these components on the plasma membrane is required to influence uPAR function, increasing uPAR-dependent pericellular proteolysis and decreasing uPAR-dependent cell adhesion. These interactions may be modified by other integrins, suggesting a complex interplay between uPAR and integrins on the cell surface with the potential to regulate invasive cell migration.
AB - Interactions between the uPA receptor (uPAR) and various integrins, including alpha(5)beta(1), are known to modulate integrin-dependent cell adhesion, and we have shown that the integrin-associated tetraspanin protein CD82 down-regulates uPAR-dependent plasminogen activation by affecting alpha(5)beta(1) cellular localisation. Here we have investigated whether overexpression of alpha(5)beta(1) directly affects uPAR-dependent pericellular proteolysis. CHO cells overexpressing alpha(5)beta(1) were found to activate plasminogen at a rate up to 18-fold faster than B2CHO cells which are alpha(5)-deficient. This effect was dependent on the activation state of alpha(5)beta(1), as it was maximal in the presence of Mn(2+). To determine the role of uPAR-alpha(5)beta(1) interactions in this effect, we determined the adhesion of these cells to immobilised soluble uPAR (suPAR). Neither cell-type was found to adhere to suPAR, but both cell types were found to adhere to an anti-uPAR monoclonal antibody in a uPAR- and integrin-dependent manner. This adhesion was 10-fold greater in the absence of alpha(5)beta(1), possibly implicating the involvement of non-alpha(5)-integrins. Soluble forms of the various components were used to investigate the molecular basis of these effects, but no direct interactions could be demonstrated between alpha(5)beta(1) and either uPAR, uPA or uPA-uPAR complex. This suggests that assembly of these components on the plasma membrane is required to influence uPAR function, increasing uPAR-dependent pericellular proteolysis and decreasing uPAR-dependent cell adhesion. These interactions may be modified by other integrins, suggesting a complex interplay between uPAR and integrins on the cell surface with the potential to regulate invasive cell migration.
U2 - 10.1160/TH08-08-0558
DO - 10.1160/TH08-08-0558
M3 - Article
SN - 0340-6245
VL - 101
SP - 954
EP - 962
JO - Thrombosis and Haemostasis
JF - Thrombosis and Haemostasis
IS - 5
ER -