TY - JOUR
T1 - Reversible Electrochemically Triggered Delamination
Blistering of Hydrogel Films on Micropatterned Electrodes
AU - Xu, Ben
AU - Liu, Qihan
AU - Suo, Zhigang
AU - Hayward, Ryan
N1 - Attached file to go under 12-month embargo when from publication date PB 23-2-16
PY - 2016/5/17
Y1 - 2016/5/17
N2 - Stimuli responsive elastic instabilities provide opportunities for controlling the structures and properties of polymer surfaces, offering a range of potential applications. Here, a surface actuator based on a temperature and electrically responsive poly(N-isopropyl acrylamide-co-sodium acrylate) hydrogel that undergoes a two-step delimitation and buckling instability triggered using micropatterned electrodes is described. The electrically actuated structures entail large out-of-plane displacements that take place on time-scales of less than 1 s, in response to modest triggering voltages (−3–6 V). Alongside these experimental observations, finite element simulations are conducted to better understand the two-step nature of the instability. In the first step, hydrogel films undergo delamination and formation of blisters, facilitated by electrochemical reduction of the thiol groups anchoring the film to the electrodes. Subsequently, at larger reducing potentials, the electrolytic current is sufficient to nucleate a gas bubble between the electrode and the gel, causing the delaminated region to adopt a straight-sided blister shape. Finally, thermally induced deswelling of the gel allows the film to be returned to its flat state and readhered to the electrode, thereby allowing for repeated actuation.
AB - Stimuli responsive elastic instabilities provide opportunities for controlling the structures and properties of polymer surfaces, offering a range of potential applications. Here, a surface actuator based on a temperature and electrically responsive poly(N-isopropyl acrylamide-co-sodium acrylate) hydrogel that undergoes a two-step delimitation and buckling instability triggered using micropatterned electrodes is described. The electrically actuated structures entail large out-of-plane displacements that take place on time-scales of less than 1 s, in response to modest triggering voltages (−3–6 V). Alongside these experimental observations, finite element simulations are conducted to better understand the two-step nature of the instability. In the first step, hydrogel films undergo delamination and formation of blisters, facilitated by electrochemical reduction of the thiol groups anchoring the film to the electrodes. Subsequently, at larger reducing potentials, the electrolytic current is sufficient to nucleate a gas bubble between the electrode and the gel, causing the delaminated region to adopt a straight-sided blister shape. Finally, thermally induced deswelling of the gel allows the film to be returned to its flat state and readhered to the electrode, thereby allowing for repeated actuation.
U2 - 10.1002/adfm.201504769
DO - 10.1002/adfm.201504769
M3 - Article
SN - 1616-301X
VL - 26
SP - 3218
EP - 3225
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 19
ER -