Review on classification of resonant converters for electric vehicle application

Sheetal Deshmukh (Gore)*, Atif Iqbal, Shirazul Islam, Irfan Khan, Mousa Marzband, Syed Rahman, Abdullah M.A.B. Al-Wahedi

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

38 Citations (Scopus)
127 Downloads (Pure)


The conventional hard-switching converters suffer from the limitations like the upper limit on switching frequency, high electromagnetic interference (EMI), more switching losses, large size, increased weight and low efficiency. To overcome these limitations, resonant converters are popularly used in chargers of electric vehicles (EVs). However, the detailed classification of resonant converters used in EVs is not sufficiently discussed in the literature. The guideline to select a resonant converter based topology required to charge an EV on the basis of its rating is not mentioned. To fill this gap, this paper presents a state-of-art literature survey of various resonant converter based topologies used in chargers of EVs. This paper focuses on a detailed classification of resonant converters used in the second stage of EV chargers. Further, it provides a guideline to designers to choose a converter topology used in the first stage and the second stage of EV charger required based on wattage, unidirectional and bidirectional power flow. Depending on the number of reactive elements present in a given resonant converter topology, these are classified as two-element, three-element, and multi-element resonant converters. Depending upon the connection of inductive (L) and capacitive (C) elements with respect to transformer winding, these converter topologies are further categorized as series, parallel (two-elements), inductor–inductor–capacitor (LLC) (three-element) and capacitor–inductor–inductor–capacitor (CLLC) (Multi-elements). However, the LLC type resonant converters offer high efficiency, zero-voltage switching (ZVS turn-on, turn-off) and low voltage stress on switches and high power density. Therefore, this paper mainly focuses on LLC type resonant converter topology. In addition, various modulation schemes and control schemes for LLC, CLLC resonant converter along with control of active power and reactive power are discussed for vehicle-2-grid (V2G) mode of operation.

Original languageEnglish
Pages (from-to)1091-1113
Number of pages23
JournalEnergy Reports
Early online date30 Dec 2021
Publication statusPublished - 1 Nov 2022


Dive into the research topics of 'Review on classification of resonant converters for electric vehicle application'. Together they form a unique fingerprint.

Cite this