Abstract
Rigid foldability allows an origami pattern to fold about crease lines without twisting or stretching component panels. It enables folding of rigid materials, facilitating the design of foldable structures. Recent study shows that rigid foldability is affected by the mountain- valley crease (M-V) assignment of an origami pattern. In this paper, we investigate the rigid foldability of the square-twist origami pattern with diverse M-V assignments by a kinematic method based on the motion transmission path. Four types of square-twist origami patterns are analyzed, among which two are found rigidly foldable, while the other two are not. The explicit kinematic equations of the rigid cases are derived based on the kinematic equivalence between the rigid origami pattern and the closed-loop network of spherical 4 R linkages. We also convert a non-rigid pattern into a rigid one by introduc- ing an extra crease. The kinematic analysis of the modified pattern reveals an interesting bifurcation behaviour. This work not only helps to deepen our understanding on the rigid foldability of origami patterns and its relationship with the M-V assignments, but also pro- vides us an effective way to create more rigidly foldable origami patterns from non-rigid ones.
Original language | English |
---|---|
Article number | 103947 |
Pages (from-to) | 103947 |
Number of pages | 12 |
Journal | Mechanism and Machine Theory |
Volume | 152 |
Early online date | 6 Jun 2020 |
DOIs | |
Publication status | Published - 1 Oct 2020 |
Externally published | Yes |
Keywords
- Bifurcation
- Kinematics
- Mountain-valley crease assignment
- Rigid foldability
- Square-twist origami pattern