RSS-Based Wireless LAN Indoor Localization and Tracking Using Deep Architectures

Muhammed Zahid Karakusak*, Hasan Kivrak, Hasan Fehmi Ates, Mehmet Kemal Ozdemir

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
30 Downloads (Pure)

Abstract

Wireless Local Area Network (WLAN) positioning is a challenging task indoors due to environmental constraints and the unpredictable behavior of signal propagation, even at a fixed location. The aim of this work is to develop deep learning-based approaches for indoor localization and tracking by utilizing Received Signal Strength (RSS). The study proposes Multi-Layer Perceptron (MLP), One and Two Dimensional Convolutional Neural Networks (1D CNN and 2D CNN), and Long Short Term Memory (LSTM) deep networks architectures for WLAN indoor positioning based on the data obtained by actual RSS measurements from an existing WLAN infrastructure in a mobile user scenario. The results, using different types of deep architectures including MLP, CNNs, and LSTMs with existing WLAN algorithms, are presented. The Root Mean Square Error (RMSE) is used as the assessment criterion. The proposed LSTM Model 2 achieved a dynamic positioning RMSE error of (Formula presented.), which outperforms probabilistic WLAN algorithms such as Memoryless Positioning (RMSE: (Formula presented.)) and Nonparametric Information (NI) filter with variable acceleration (RMSE: (Formula presented.)) under the same experiment environment.

Original languageEnglish
Article number84
Number of pages26
JournalBig Data and Cognitive Computing
Volume6
Issue number3
DOIs
Publication statusPublished - 8 Aug 2022
Externally publishedYes

Keywords

  • Continuous Wavelet Transform (CWT)
  • Convolutional Neural Networks (CNN)
  • deep learning
  • fingerprinting-based localization
  • Hyperparameter Optimization (HPO)
  • Kernel Density Estimator (KDE)
  • Long Short Term Memory (LSTM)
  • Multi-Layer Perceptron (MLP)
  • position tracking
  • Received Signal Strength (RSS)
  • Wireless LAN indoor positioning

Cite this