Satellite-based ensemble intelligent approach for predicting forest fire: a case of the Hyrcanian forest in Iran

Seyed Babak Haji Seyed Asadollah, Ahmad Sharafati*, Davide Motta

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

A machine learning-based approach is applied to simulate and forecast forest fires in the Golestan province in Iran. A dataset for no-fire, medium confidence (MC) fire events, and high confidence (HC) fire events is constructed from MODIS-MOD14A2. Nine climate variables from NASA’s FLDAS are used as input variables, and 12 dates and 915 study points are considered. Three machine learning ensemble multi-label classifiers, gradient boosting (GBC), random forest (RFC), and extremely randomized tree (ETC), are used for forest fire simulation for the period 2000 to 2021, and ETC is found to be the most accurate classifier. Future fire projection for the near-future period of 2030 to 2050 is carried out with the ETC model, using CMIP6 EC-Earth3-SSP245 General Circulation Model (GCM) data. It is projected that MC forest fire occurrences will decrease, while HC forest fire occurrences will increase, and that the summer months, especially September, will be the most affected by fire.

Original languageEnglish
Pages (from-to)22830-22846
Number of pages17
JournalEnvironmental Science and Pollution Research
Volume31
Issue number15
Early online date27 Feb 2024
DOIs
Publication statusPublished - 1 Mar 2024

Keywords

  • Forecasting
  • Forest fire
  • General circulation model
  • Machine learning

Cite this