Abstract
Catalysts play a key role in hydrogen production as green energy carriers. We show herein for the first time that manganese impurities in graphene can improve the catalytic activity of synthesized N‐doped graphene (NG) for the hydrogen evolution reaction in acid media by influencing the ratio of different N‐functionalities. A 122 mV improvement in the overpotential was found following the Mn impregnation of graphene. Transmission electron microscopy images confirmed the formation of manganese oxide nanoparticles on the NG sheets. X‐ray photoelectron spectroscopy revealed structural alteration in favor of higher quantities of quaternary and pyrrolic nitrogen functionalities, from approximately 37 % in NG to 84 % in the Mn‐inserted‐doped graphene catalyst. This enhanced catalytic performance, based on density functional theory calculations in the literature, was attributed to an increase in the number of active sites with higher activity.
Original language | English |
---|---|
Pages (from-to) | 4049–4052 |
Number of pages | 4 |
Journal | ChemCatChem |
Volume | 9 |
Issue number | 21 |
Early online date | 25 Sept 2017 |
DOIs |
|
Publication status | Published - 9 Nov 2017 |
Externally published | Yes |