TY - JOUR
T1 - Secure Bluetooth Communication in Smart Healthcare Systems
T2 - A Novel Community Dataset and Intrusion Detection System
AU - Zubair, Mohammed
AU - Ghubaish, Ali
AU - Unal, Devrim
AU - Al-Ali, Abdulla
AU - Reimann, Thomas
AU - Alinier, Guillaume
AU - Hammoudeh, Mohammad
AU - Qadir, Junaid
N1 - Funding information: This publication was made possible by NPRP grant NPRP 100125-170250 from the Qatar National Research Fund (a member of Qatar Foundation).
PY - 2022/10/28
Y1 - 2022/10/28
N2 - Smart health presents an ever-expanding attack surface due to the continuous adoption of a broad variety of Internet of Medical Things (IoMT) devices and applications. IoMT is a common approach to smart city solutions that deliver long-term benefits to critical infrastructures, such as smart healthcare. Many of the IoMT devices in smart cities use Bluetooth technology for short-range communication due to its flexibility, low resource consumption, and flexibility. As smart healthcare applications rely on distributed control optimization, artificial intelligence (AI) and deep learning (DL) offer effective approaches to mitigate cyber-attacks. This paper presents a decentralized, predictive, DL-based process to autonomously detect and block malicious traffic and provide an end-to-end defense against network attacks in IoMT devices. Furthermore, we provide the BlueTack dataset for Bluetooth-based attacks against IoMT networks. To the best of our knowledge, this is the first intrusion detection dataset for Bluetooth classic and Bluetooth low energy (BLE). Using the BlueTack dataset, we devised a multi-layer intrusion detection method that uses deep-learning techniques. We propose a decentralized architecture for deploying this intrusion detection system on the edge nodes of a smart healthcare system that may be deployed in a smart city. The presented multi-layer intrusion detection models achieve performances in the range of 97-99.5% based on the F1 scores.
AB - Smart health presents an ever-expanding attack surface due to the continuous adoption of a broad variety of Internet of Medical Things (IoMT) devices and applications. IoMT is a common approach to smart city solutions that deliver long-term benefits to critical infrastructures, such as smart healthcare. Many of the IoMT devices in smart cities use Bluetooth technology for short-range communication due to its flexibility, low resource consumption, and flexibility. As smart healthcare applications rely on distributed control optimization, artificial intelligence (AI) and deep learning (DL) offer effective approaches to mitigate cyber-attacks. This paper presents a decentralized, predictive, DL-based process to autonomously detect and block malicious traffic and provide an end-to-end defense against network attacks in IoMT devices. Furthermore, we provide the BlueTack dataset for Bluetooth-based attacks against IoMT networks. To the best of our knowledge, this is the first intrusion detection dataset for Bluetooth classic and Bluetooth low energy (BLE). Using the BlueTack dataset, we devised a multi-layer intrusion detection method that uses deep-learning techniques. We propose a decentralized architecture for deploying this intrusion detection system on the edge nodes of a smart healthcare system that may be deployed in a smart city. The presented multi-layer intrusion detection models achieve performances in the range of 97-99.5% based on the F1 scores.
KW - Artificial intelligence
KW - Bluetooth
KW - Wireless Communications
KW - Communication Security
KW - Smart City Networks
U2 - 10.3390/s22218280
DO - 10.3390/s22218280
M3 - Article
SN - 1424-3210
VL - 22
JO - Sensors
JF - Sensors
IS - 21
M1 - 8280
ER -