TY - JOUR
T1 - Sessions of Prolonged Continuous Theta Burst Stimulation or High-frequency 10 Hz Stimulation to Left Dorsolateral Prefrontal Cortex for 3 Days Decreased Pain Sensitivity by Modulation of the Efficacy of Conditioned Pain Modulation
AU - De Martino, Enrico
AU - Fernandes, Ana Mércia
AU - Galhardoni, Ricardo
AU - De Oliveira Souza, Carolina
AU - Ciampi De Andrade, Daniel
AU - Graven-Nielsen, Thomas
PY - 2019/12/1
Y1 - 2019/12/1
N2 - The 10 Hz repetitive transcranial magnetic stimulation (10 Hz-rTMS) to the left dorsolateral prefrontal cortex produces analgesia, probably by activating the pain modulation system. A newer rTMS paradigm, called theta burst stimulation (TBS), has been developed. Unlike 10 Hz-rTMS, prolonged continuous TBS (pcTBS) mimics endogenous theta rhythms, which can improve induction of synaptic long-term potentiation. Therefore, this study investigated whether pcTBS to the left dorsolateral prefrontal cortex reduced pain sensitivity more efficiently compared with 10 Hz-rTMS, the analgesic effects lasted beyond the stimulation period, and the reduced pain sensitivity was associated with increased efficacy of conditioned pain modulation (CPM) and/or intracortical excitability. Sixteen subjects participated in a randomized cross-over study with pcTBS and 10 Hz-rTMS. Pain thresholds to heat (HPT), cold, pressure (PPT), intracortical excitability assessment, and CPM with mechanical and heat supra-pain threshold test stimuli and the cold pressor test as conditioning were collected before (Baseline), 3 (Day3) and 4 days (Day4) after 3-day session of rTMS. HPTs and PPTs increased with 10 Hz-rTMS and pcTBS at Day3 and Day4 compared with Baseline (P = .007). Based on pooled data from pcTBS and 10 Hz-rTMS, the increased PPTs correlated with increased efficacy of CPM at Day3 (P = .008), while no correlations were found at Day4 or with the intracortical excitability. PERSPECTIVE: Preliminary results of this comparative study did not show stronger pain sensitivity reduction by pcTBS compared with 10 Hz-rTMS to the L-DPFC. Both protocols maintained increased pain thresholds up to 24-hours after the last session, which were partially associated with modulation of CPM efficacy but not with the intracortical excitability changes.
AB - The 10 Hz repetitive transcranial magnetic stimulation (10 Hz-rTMS) to the left dorsolateral prefrontal cortex produces analgesia, probably by activating the pain modulation system. A newer rTMS paradigm, called theta burst stimulation (TBS), has been developed. Unlike 10 Hz-rTMS, prolonged continuous TBS (pcTBS) mimics endogenous theta rhythms, which can improve induction of synaptic long-term potentiation. Therefore, this study investigated whether pcTBS to the left dorsolateral prefrontal cortex reduced pain sensitivity more efficiently compared with 10 Hz-rTMS, the analgesic effects lasted beyond the stimulation period, and the reduced pain sensitivity was associated with increased efficacy of conditioned pain modulation (CPM) and/or intracortical excitability. Sixteen subjects participated in a randomized cross-over study with pcTBS and 10 Hz-rTMS. Pain thresholds to heat (HPT), cold, pressure (PPT), intracortical excitability assessment, and CPM with mechanical and heat supra-pain threshold test stimuli and the cold pressor test as conditioning were collected before (Baseline), 3 (Day3) and 4 days (Day4) after 3-day session of rTMS. HPTs and PPTs increased with 10 Hz-rTMS and pcTBS at Day3 and Day4 compared with Baseline (P = .007). Based on pooled data from pcTBS and 10 Hz-rTMS, the increased PPTs correlated with increased efficacy of CPM at Day3 (P = .008), while no correlations were found at Day4 or with the intracortical excitability. PERSPECTIVE: Preliminary results of this comparative study did not show stronger pain sensitivity reduction by pcTBS compared with 10 Hz-rTMS to the L-DPFC. Both protocols maintained increased pain thresholds up to 24-hours after the last session, which were partially associated with modulation of CPM efficacy but not with the intracortical excitability changes.
U2 - 10.1016/j.jpain.2019.05.010
DO - 10.1016/j.jpain.2019.05.010
M3 - Article
C2 - 31132509
SN - 1526-5900
VL - 20
SP - 1459
EP - 1469
JO - Journal of Pain
JF - Journal of Pain
IS - 12
ER -